Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2019, Vol. 37 ›› Issue (3): 87-95.doi: 10.16088/j.issn.1001-6600.2019.03.010

Previous Articles    

Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System

HE Dongping1,HUANG Wentao 2*,WANG Qinlong1   

  1. 1.School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin Guangxi 541004, China;
    2.School of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Published:2019-07-12

Abstract: Limit cycle flutter and the motion of chaos of two-dimensional airfoil with quadratic nonlinear pitching stiffness in incompressible flow on nonzero equilibrium points are investigated.The center manifold theory is used to reduce a four-dimensional system to a two-dimensional system,and the bifurcation points of the system are determined by bifurcation theory.The type and stability of bifurcation points are determined by computing focal values of system.The type of Hopf bifurcation is determined by the second Lyapunov method of bifurcation problem.The theoretical analysis presented here provides a good agreement with numerical simulations obtained by using a fourth-order Runge-Kutta method.Furthermore, the way leads to chaos in the airfoil system is found and there exits large field of the period-five motion.The results indicate that the bifurcation point is a stable weak focus, when the supercritical Hopf occurs,there exists a stable limit cycle.The motion of chaos occurs due to period-doubling bifurcation.

Key words: nonlinear system, period-doubling bifurcation, limit cycle flutter, center manifold theory, bifurcation point

CLC Number: 

  • O175
[1] 蔡铭.强非线性颤振分析方法研究[D].广州:中山大学,2004.
[2] 陈衍茂,刘济科,孟光.二元机翼非线性颤振系统的若干分析方法[J].振动与冲击,2011,30(3): 129-134.
[3] 刘济科,张宪民,赵令诚,等.不可压气流中二元机翼颤振的分岔点研究[J].固体力学学报,1999,20(4): 315-319.
[4] 郝淑英,刘海英,张琪昌.立方非线性机翼非零平衡点极限环颤振的研究[J].天津理工大学学报,2007,23(2): 1-4.
[5] 郑国勇.不可压缩流中机翼颤振稳定性研究[J].力学季刊,2010,31(2): 207-212.
[6] LEE B H K, LIU L, CHUNG K W. Airfoil motion in subsonic flow with strong cubic nonlinear restoring forces[J]. Journal of Sound and Vibration, 2005, 281(3): 699-717. DOI:10.1016/j.jsv.2004.01.034.
[7] 刘菲.非线性气动弹性系统的分叉分析[D].成都:西南交通大学,2007.
[8] 郑国勇,杨翊仁.超音速流中结构非线性二元机翼的复杂响应研究[J].振动与冲击,2007,26(12): 96-100.
[9] ZHENG Guoyong, YANG Yiren. Chaotic motions and limit cycle flutter of two-dimensional wing in supersonic flow[J]. Acta Mechanica Solida Sinica, 2008, 21(5): 441-448. DOI:10.1007/s10338-008-0853-y.
[10]COLLER B D, CHRAMA P A. Structural nonlinearities and the nature of the classic flutter instability[J]. Journal of Sound and Vibration, 2004, 277(4): 711-739. DOI:10.1016/j.jsv.2003.09.017.
[11]SHAHRZAD P, MAHZOON M. Limit cycle flutter of airfoils in steady and unsteady flows[J]. Journal of Sound and Vibration, 2002, 256(2): 213-225. DOI:10.1006/jsvi.2001.4113.
[12]ABDELKEFI A, RUI V, NAYFEH A H,et al.An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system[J].Nonlinear Dynamics, 2013, 71(1-2): 159-173. DOI: 10.1007/s11071-012-0648-z.
[13]CAI Ming, LIU Weifei, LIU Jike. Bifurcation and chaos of airfoil with multiple strong nonlinearities[J].Applied Mathematics and Mechanics, 2013, 34(5): 627-636. DOI:10.1007/s10483-013-1696-x.
[14]CHEN Yanmao, LIU Jike. On the limit cycles of aeroelastic systems with quadratic nonlinearities [J].Structural Engineering and Mechanics, 2008, 30(30): 67-76. DOI:10.12989/sem.2008.30.1.067.
[15]马知恩,周义仓.常微分方程定性与稳定性方法[M]. 北京:科学出版社,2001:244-248.
[16]张琪昌.分叉与混沌理论及应用[M].天津:天津大学出版社,2005:58-61.
[17]LIU Yirong, LI Jibin, HUANG Wentao. Planar dynamical systems: selected classical problems[M]. Beijing: Science Press, 2014: 69-78.
[18]蔡燧林,钱祥征.常微分方程定性理论引论[M].北京:高等教育出版社,1994:18-29.
[19]张锦炎.常微分方程几何理论与分支问题[M].北京:北京大学出版社,1981:207-208.
[1] ZHOU Jian-jun, HONG Bao-jian, LU Dian-chen. New Jacobi Elliptic Functions Solutions of the Schrödinger-Boussinesq Equations [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2013, 31(1): 11-15.
[2] HAN Cai-hong, LI Lue, HUANG Rong-li. Dynamics of the Difference Equation xn+1=pn+xnxn-1 [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2013, 31(1): 44-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!