Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2025, Vol. 61 ›› Issue (4): 63-75.doi: 10.16088/j.issn.1001-6597.2025.04.006

Previous Articles     Next Articles

Human-Machine Symbiosis in Smart Education: Modalities, Mechanisms, and Implementation Pathways

LIU Ge-ping1, NONG Li-qiao2   

  1. 1. Faculty of Education, Southwest University, Chongqing 400715, China;
    2. School of Hunmanities, Guangxi Polytechnic of Construction, Nanning 530007, China
  • Received:2024-03-17 Online:2025-07-05 Published:2025-06-23

Abstract: The human-machine symbiosis in smart education is characterized by human-machine collaboration and co-creation. Its intelligent pedagogical modalities embrace human-machine co-teaching, co-learning, and co-integration. The mechanisms through which human-machine symbiosis enhances learners’ capabilities are manifested as follows: From the perspective of learners’ internal cognitive processes, the transition from information acquisition to practical output constitutes an effective cognitive process; Diversified practical outputs provide the foundation for multimodal data analysis, enabling precise evaluation of learners’ levels and states; Organizing classroom instruction with the value orientation of promoting learners’ abilities facilitates the implementation of teaching activities such as role-playing and group negotiation, thereby advancing learners’ knowledge and skills; Multimodal learning approaches combining human-machine co-teaching, co-learning, and co-integration broaden learners’ cognitive breadth, deepen their cognitive depth, and foster the development of learning capabilities. The pathways for intelligent technologies to empower smart education include: Diversifying teaching methods to create “smart + teaching”; expanding learning resources to build “smart + resources”; emphasizing personalized learning to achieve “smart + learning”; and systematizing classroom management to advance “smart + management”. The application of human-machine symbiosis in smart education should leverage “intelligence” to facilitate teaching (creating intelligent classroom environments), promote learning (strengthening intelligent learning methods), and enable pedagogical innovation (constructing intelligent teaching models). Human-machine symbiosis in smart education holds significant importance for driving educational innovation and achieving high-quality development in smart teaching, which aligns with trends in educational technology and future educational demands.

Key words: human-machine symbiosis, intelligent technologies, smart education, intrinsic mechanisms, intelligent teacher

CLC Number:  G436;G42
[1] Luckin R, Holmes W. Intelligence unleashed: an argument for AI in education[EB/OL]. (2016-11-24)[2024-01-03]. https://www.pearson.com/news/blogs/CompanyBlog/2016/03/intelligence-unleashed-an-argument-for-ai-in-education.html.
[2] 彭绍东.人工智能教育的含义界定与原理挖掘[J].中国电化教育,2021(6):49-59.
[3] [加拿大]马歇尔·麦克卢汉.理解媒介:论人的延伸[M].何道宽,译.北京:商务印书馆,2000.
[4] 吴国林,程文.技术进步的哲学审视[J].科学技术哲学研究,2018(1):62-66.
[5] Licklider J C R. Man-computer symbiosis[J].IRE Transactions on Human Factors in Electronics, 1960(3):4-11.
[6] 徐建华. 共建式高校课堂生态环境研究[D]. 哈尔滨:哈尔滨师范大学,2016.
[7] Larsen-Freeman D. Chaos/complexity theory for second language acquisition[M]//Chapelle C A. The encyclopedia of applied linguistics. Blackwell: 2013.
[8] 汪时冲,方海光,张鸽,等.人工智能教育机器人支持下的新型“双师课堂”研究——兼论“人机协同”教学设计与未来展望[J].远程教育杂志,2019(2):25-32.
[9] 王竹立.论智能时代的人—机合作式学习[J].电化教育研究,2019(9):18-25,33.
[10] 余胜泉,王琦.“AI+教师”的协作路径发展分析[J].电化教育研究,2019(4):14-22,29.
[11] 宋灵青, 许林. 人工智能教育应用的逻辑起点与边界——以知识学习为例[J].中国电化教育,2019 (6): 14-20.
[12] 蔡曙山, 薛小迪.人工智能与人类智能——从认知科学五个层级的理论看人机大战[J]. 北京大学学报(哲学社会科学版),2016 (4): 145-154.
[13] 龙海明,程谟怡,刘子欣.智能化发展能否促进绿色消费?——基于城乡融合建设的中介效应分析[J].财经理论与实践,2023(6):85-93.
[14] 张学军,董晓辉.人机共生:人工智能时代及其教育的发展趋势[J].电化教育研究,2020(4):35-41.
[15] 刘革平,农李巧.从“泛智”论到泛在学习进阶智慧学习:论“泛”教育思想的内在关联和价值意蕴[J].电化教育研究,2020(6):27-32,67.
[16] 杨彦军,罗吴淑婷,童慧.基于“人性结构”理论的AI助教系统模型研究[J].电化教育研究,2019(11):12-20.
[17] Frank L, Richard J M. Dancing with robots: human skills for computerized work[R/OL].(2019-07-01)[2024-01-03].http://content.thirdway.org/publications/714/Dancing-With-Robots.
[18] 刘革平,刘选.跨学科比较视域下智慧教育的概念模型[J].电化教育研究,2021(3):5-11.
[19] 赵雪梅,钟绍春.具身认知视域下促进高阶思维发展的多模态交互机制研究[J].电化教育研究,2021(8):65-71,87.
[20] 尹春杰,周信杉,高金岭. 数字教材应用的价值、风险及其应对[J]. 广西师范大学学报(哲学社会科学版),2024(3):130-138.
[21] 郭炯,郝建江.人工智能环境下的学习发生机制[J].现代远程教育研究,2019(5):32-38.
[22] [美]约翰·杜威.民主主义与教育[M]. 陶志琼, 译. 北京: 中国轻工业出版社, 2017.
[23] 钟正,王俊,吴砥,等.教育元宇宙的应用潜力与典型场景探析[J].开放教育研究,2022(1):17-23.
[24] 王星,刘革平,农李巧,等.智慧课堂赋能学生智慧的培育机制:内在机理、结构要素与联通路径[J].电化教育研究,2021(8):26-34.
[25] 叶澜.转化融通在合作研究中生成——四论教育理论与教育实践的关系[J].教育研究,2021(1):31-58.
[26] 梁迎丽,梁英豪.人工智能时代的智慧学习:原理、进展与趋势[J].中国电化教育,2019(2):16-21.
[27] Moore M G.Three types of interaction[J].America Journal of Distance Education,1989(2):1-6.
[28] 石玲. 网络多媒体形态下大学英语词汇教与学的实证研究[D].南京:东南大学,2016.
[29] 岳伟,苏灵敏.学会学习:智能时代学习方式变革的本质透视[J].广西师范大学(哲学社会科学版),2023(4):58-67.
[1] WU Bian, CHEN Si-si. Visual Learning Analysis for Promoting Teaching and Learning in a Smart Education Environment [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2024, 60(1): 92-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!