Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2019, Vol. 37 ›› Issue (3): 132-141.doi: 10.16088/j.issn.1001-6600.2019.03.015

Previous Articles    

Spectral Features, α-glucosidase Inhibitory Activities, Antioxidant Activities and Quantitative Determination of Mogroside ⅡA of Siraitia grosvenorii

CHEN Xu1, LIANG Chengqin1*   

  1. 1.College of Pharmacy, Guilin Medical University, Guilin Guangxi 541004,China;
    2.College of Biotechnology, Guilin Medical University, Guilin Guangxi 541004,China
  • Published:2019-07-12

Abstract: In order to study the biological activity and resource content of the sweet glycosides in the fruits of Siraitia grosvenorii and provide experimental basis for its further development and utilization, the compound of mogroside ⅡA was isolated from the fruits by column chromatography. NMR was used to analyze the spectral characteristics of mogroside ⅡA; The possible mechanism of hypoglycemia of mogroside was discussed through the determination of the inhibitory activity of α-glucosidase and antioxidant activities; And by HPLC-MS method, the content of mogroside ⅡA of Siraitia grosvenorii from different habitats were detected. As a result, this paper provides complete spectrum data for mogroside ⅡA that has not been reported; And the results showed that mogroside ⅡA had good inhibiting activity of α-glucosidase, the IC50was 0.187±0.006 g/L, and the inhibiting activity showed a dose-dependent, fast, competitive and reversible features; In addition, through content analysis, it was found that the content of mogroside ⅡA of Siraitia grosvenorii produced from Yongfu township was the highest.

Key words: Siraitia grosvenorii, mogroside ⅡA, HPLC-MS, α-glucosidase activity, antioxidant activity

CLC Number: 

  • R284.1
[1] 国家药典委员会. 中华人民共和国药典:一部[M]: 2015年版. 北京: 中国医药科技出版社, 2015.
[2] 万艳娟, 吴军林, 吴清平. 罗汉果降血糖作用及机理研究进展[J]. 食品研究与开发, 2016, 37(11): 188-191.
[3] 章弘扬,杨辉华,张敏,等. UPLC-MS结合模式识别用于罗汉果不同部位化学成分的比较分析[J]. 中草药, 2013, 44(1): 19-23.
[4] XU Q, CHEN S Y, DENG L D, et al. Antioxidant effect of mogrosides against oxidative stress induced by palmitic acid in mouse insulinoma NIT-1 cells[J]. Brazilian Journal of Medical and Biological Research, 2013, 46(11): 949-955.
[5] 赵丰丽, 蒋秀娟, 吴奔, 等. 紫薯渣花色苷提取及其功能饮料的研究[J]. 粮油食品科技, 2016, 24(5): 57-61.
[6] L′HEVEDER R, NOLAN T. International diabetes federation[J]. Diabetes Research and Clinical Practice, 2013, 101(3): 349-351.
[7] 中华医学会糖尿病学分会. 中国Ⅱ型糖尿病防治指南(2010年版)[J]. 中国糖尿病杂志, 2012, 20(1): 54-109.
[8] 莫一菲, 周健, 贾伟平. 国际糖尿病联盟2012年全球Ⅱ型糖尿病指南解读[J]. 中国医学前沿杂志, 2012, 4(11): 70-77.
[9] 林宝妹, 郑开斌, 张帅, 等. 不同成熟度树葡萄果实醇提取物抗氧化和抑制α-葡萄糖苷酶活性研究[J]. 热带亚热带植物学报, 2018, 26(3): 233-240.
[10]张俐勤, 戚向阳, 陈维军, 等. 罗汉果皂苷提取物对糖尿病小鼠血糖、血脂及抗氧化作用的影响[J]. 中国药理学通报, 2006, 22(2): 237-240.
[11]蒋玉梅, 唐学军, 高立波, 等. 桂林地区种植罗汉果的自然和社会优势分析[J]. 南方园艺, 2018, 29(4): 22-24.
[12]赵燕, 刘国艳, 史贤明. 罗汉果浓缩汁及罗汉果甜甙对小鼠血脂代谢的影响[J]. 中国食品学报, 2008, 8(1): 9-12.
[13]肖刚, 王勤. 罗汉果甜苷对小鼠实验性肝损伤保护作用的研究[J]. 中国药房, 2008, 19(3): 163-165.
[14]WANG Y F, CAO J X, EFFERTH T, et al. Cytotoxic and new tetralone derivatives from Berchemia floribunda (Wall.) Brongn[J]. Chemistry and Biodiversity, 2010, 3(6): 646-653.
[15]HRETOLU D, SARI S, ZEL A, et al. α-Glucosidase inhibitory effect of Potentilla astracanica and some isoflavones: Inhibition kinetics and mechanistic insights through in vitro and in silico studies[J]. International Journal of Biological Macromolecules, 2017, 105: 1062-1070.
[16]许有瑞, 伊辉, 张可锋, 等. 瑶药葫芦钻中α-葡萄糖苷酶抑制活性部位的筛选[J]. 中国药房, 2017, 28(16): 2235-2237.
[17]FRANKEL E N, MEYER A S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants[J]. Journal of the Science of Food and Agriculture, 2000, 80(13): 1925-1941.
[18]WANG J, ZHANG J, ZHAO B, et al. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation[J]. Carbohydrate Polymers, 2010, 80(1): 84-93.
[19]PU X, MA X, LIU L, et al. Structural characterization and antioxidant activity in vitro of polysaccharides from angelica and astragalus[J]. Carbohydrate Polymers, 2016, 137: 154-164.
[20]TAKEMOTO T, ARIHARA S, NAKAJIMA T, et al. Studies on the constituents of Fructus momordicae. Ⅲ. structure of mogrosides[J]. Yakugaku Zasshi Journal of the Pharmaceutical Society of Japan, 1983, 103 (11): 1167-1173.
[21]CHIU C H, WANG R, LEE C C, et al. Biotransformation of mogrosides from siraitia grosvenorii swingle by saccharomyces cerevisiae[J]. Journal of Agricultural and Food Chemistry, 2013, 61 (29):7127-7134.
[22]ZHOU X L, LUO Q, HUANG S X, et al. New tetralone derivatives from the leaves of Cyclocaryapaliurus[J]. Journal of Asian Natural Products Research, 2019,21(2):157-164. DOI: 10.1080/10286020.2017.1409733.
[1] SU Jun, DUAN Yu-lin, LÜ Shi-jun, LIU Dong-cheng. Determination of 28 Elements of Spatholobus suberectus Dunn by ICP-MS [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2013, 31(1): 76-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!