Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2021, Vol. 39 ›› Issue (2): 62-70.doi: 10.16088/j.issn.1001-6600.2020031601

Previous Articles     Next Articles

Sliding Mode Control for Fractional Chaotic Order Synchronous Reluctance Motor

WU Lei1*, YANG Zhi 2, ZHANG Lei 1, BAI Kezhao3   

  1. 1. Department of Teaching and Research, 95795 Troops of the PLA, Guilin Guangxi 541003, China;
    2. School of Computer Science and Technology, Changchun University of Science and Technology, Changchun Jilin 130022, China;
    3. College of Physics and Technology, Guangxi Normal Universily, Guilin Guangxi 541004, China
  • Received:2020-03-16 Revised:2020-07-14 Online:2021-03-25 Published:2021-04-15

Abstract: The maximum Lyapunov exponent of fractional order FOSRM system is calculated and 0-1 test for time series of status values is made by using numerical methods. The minimum order of chaotic motion of fractional order FOSRM system is about 2.01.The fractional order synchronous reluctance motor (FOSRM) has chaotic oscillation under the condition of specific order and parameters, which seriously affects the dynamic performance and stability of the system. In this paper, a controller designed based on the infinite state method and sliding mode control theory is used. The stabilization control of the system is realized under the conditions of no disturbance or disturbance. The global asymptotic stability of the system can be achieved rapidly, and the effectiveness of the method is verified by numerical simulation. The evaluation index of state stabilization control is that whether the system can quickly reach the global stability of zero value. Numerical simulation verifies the effectiveness of the method in this paper. The study on the stabilization control of fractional synchronous reluctance motors provides a reference for the research of excellent control methods in engineering practice.

Key words: fractional-order synchronous reluctance motors, fractional order calculus, sliding mode control, chaos, Adomian decomposition algorithm

CLC Number: 

  • O415.5
[1] WANG D D,ZHANG B,QIU D Y,et al.Stability analysis of the coupled synchronous reluctance motor drives[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2017,64(2):196-200.
[2] 余红英,赵少雄,杨臻.同步磁阻电机自适应混沌同步控制仿真研究[J].计算机测量与控制,2016,24(11):67-70.
[3] 吴雷,马姝靓,肖华鹏,等.基于反馈线性化法的同步磁阻电机跟踪控制[J].广西师范大学学报(自然科学版),2017,35(4):10-16.
[4] 吴雷,阳丽,李啟尚,等.基于小增益定理的同步磁阻电机混沌控制[J].广西师范大学学报(自然科学版),2019,37(2):44-51.
[5] 熊林云,王杰.永磁同步电机电能质量分数阶滑模控制[J].中国电机工程学报,2019,39(10):3065-3075.
[6] LI C L,YU S M,LUO X S.Fractional-order permanent magnet synchronous motor and its adaptive chaotic control[J].Chinese Physics B,2012,21(10):100506.
[7] 刘辉昭,陈晓霞.分数阶同步磁阻电机的混沌与控制[J].河南师范大学学报(自然科学版),2017,45(4):47-52,110.
[8] LUO S H,GAO R Z.Chaos control of the permanent magnet synchronous motor with time-varying delay by using adaptive sliding mode control based on DSC[J].Journal of the Franklin Institute,2018,355(10):4147-4163.
[9] RAJAGOPAL K,NAZARIMEHR F,KARTHIKEYAN A,et al.Fractional order synchronous reluctance motor:analysis,chaos control and FPGA implementation[J].Asian Journal of Control,2018,20(5):1979-1993.
[10] 赵江波,陈颖慧,王军政.基于分数阶的电动轮足式机器人腿部阻抗控制研究[J].北京理工大学学报,2019,39(2):187-192.
[11] 王荣林,陆宝春,侯润民,等.交流伺服系统分数阶PID改进型自抗扰控制[J].中国机械工程,2019,30(16):1989-1995.
[12] 刘红艳,周彦,母三民.分数阶模糊自抗扰的机器人手臂跟踪控制[J].控制工程,2019,26(5):892-897.
[13] 徐群伟,吴俊,吕文韬,等.基于双分数阶快速重复控制的有源电力滤波器电流控制策略[J].电工技术学报,2019,34(增刊1):300-311.
[14] 吴春梅.面向分数阶混沌系统线性反馈同步控制方法[J].控制工程,2019,26(5):898-902.
[15] 鲜永菊,夏诚,钟德,等.具有共存吸引子的混沌系统及其分数阶系统的镇定[J].控制理论与应用,2019,36(2):262-270.
[16] TRIGEASSOU J C,MAAMRI N,SABATIER J,et al.A Lyapunov approach to the stability of fractional differential equations[J].Signal Processing,2011,91(3):437-445.
[17] CHAREF A,SUN H H.TSAO Y Y,et al.Fractal system as represented by singularity function[J].IEEE Transactions on Automatic Control,1992,37(9):1465-1470.
[18] DIETHELM K,FORD N J,FREED A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29(1/2/3/4):3-22.
[19] DIETHELM K,FORD N J.Analysis of fractional differential equations[J].Journal of Mathematical Analysis and Applications,2002,265(2):229-248.
[20] CAFAGNA D,GRASSI G.Bifurcation and chaos in the frational order Chen system via a time domain apporch[J].International Journal of Bifurcation and Chaos,2008,18(7):1845-1863.
[21] CAFAGNA D,GRASSI G.Hyperchaos in the frational-order RÖssler system with lowest-order[J].International Journal of Bifurcation and Chaos,2009,19(1):339-347.
[22] 贺少波,孙克辉,王会海.分数阶混沌系统的Adomian分解法求解及其复杂性分析[J].物理学报,2014,63(3):030502.
[23] GOTTWALD G A,MELBOURNE I.Testing for chaos in deterministic systems with noise[J].Physica D:Nonlinear Phenomena,2005,212(1/2):100-110.
[1] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2019, 37(3): 96-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!