Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2021, Vol. 39 ›› Issue (2): 41-50.doi: 10.16088/j.issn.1001-6600.2020080201

Previous Articles     Next Articles

Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network

XUE Tao, QIU Senhui *, LU Hao, QIN Xingsheng   

  1. School of Electronic Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2020-08-02 Revised:2020-10-02 Online:2021-03-25 Published:2021-04-15

Abstract: As a new signal transformation algorithm, Empirical Mode Decomposition (EMD) can solve the limitation of some existing methods such as Fourier transform that are limited to specific basis functions. Aiming at the problem of insufficient prediction accuracy of artificial neural networks for high-frequency financial time series, this paper combines EMD and Weibull distribution to preprocess financial time series. A classification model based on EMD and multi-branch long short-term memory network is proposed in this paper. The multi-branch LSTM network based on EMD is used to extract information about price movements from high-frequency financial time series and make predictions about future price movements. By predicting the FX time series of EURUSD from 2009 to 2012, the experimental results show that the proposed model can obtain higher prediction accuracy and calculation speed. Compared with ordinary LSTM network, the generalization ability and model stability are improved.

Key words: LSTM network, financial time series, FX predicting, classification model, empirical mode decomposition, deep learning

CLC Number: 

  • TP183
[1] 黄丽明,陈维政,闫宏飞,等.基于循环神经网络和深度学习的股票预测方法[J].广西师范大学学报(自然科学版),2019,37(1):13-22.DOI: 10.16088/j.issn.1001-6600.2019.01.002.
[2]SANGVINATSOS A.A random walk down wall street:the time-tested strategy for successful investing[J].Quantitative Finance,2017,17(3):327-330.DOI: 10.1080/14697688.2016.1256598.
[3]FARIAS NAZÁRIO R T,E SILVA J L,SOBREIRO V A,et al.A literature review of technical analysis on stock markets[J].The Quarterly Review of Economics and Finance,2017,66:115-126.DOI: 10.1016/j.qref.2017.01.014.
[4]LIU J X,SUN T N,LUO Y L,et al.An echo state network architecture based on quantum logic gate and Its optimization[J].Neurocomputing,2020,371:100-107.DOI: 10.1016/j.neucom.2019.09.002.
[5]CAO J,LI Z,LI J.Financial time series forecasting model based on CEEMDAN and LSTM[J].Physica A:Statistical Mechanics and Its Applications,2019,519:127-139.DOI: 10.1016/j.physa.2018.11.061.
[6]李晓光,宋宝燕,张昕.基于滑动多窗口的时间序列流趋势变化检测[J].电子学报,2010,38(2):321-326.
[7]章登义,欧阳黜霏,吴文李.针对时间序列多步预测的聚类隐马尔科夫模型[J].电子学报,2014,42(12):2359-2364.DOI: 10.3969/j.issn.0372-2112.2014.12.004.
[8]YU Y W,WANG S S,ZHANG L J.Stock price forecasting based on BP neural network model of network public opinion[C]//2017 2nd International Conference on Image,Vision and Computing.Piscataway,NJ:IEEE Press,2017:1058-1062.DOI: 10.1109/ICIVC.2017.7984716.
[9]吕凯晨,闫宏飞,陈翀.基于沪深300成分股的量化投资策略研究[J].广西师范大学学报(自然科学版),2019,37(1):1-12.DOI: 10.16088/j.issn.1001-6600.2019.01.001.
[10]OLIVEIRA N,CORTEZ P,AREAL N.The impact of microblogging data for stock market prediction:using twitter to predict returns,volatility,trading volume and survey sentiment indices[J].Expert Systems with Applications,2017,73:125-144.DOI: 10.1016/j.eswa.2016.12.036.
[11]李艳红,贾丽娜,王素格,等.基于动态窗口的微博突发话题检测方法[J].计算机应用与软件,2020,37(5):30-37.DOI: 10.3969/j.issn.1000-386x.2020.05.006.
[12]TROIANO L,VILLA E M,LOIA V.Replicating a trading strategy by means of LSTM for financial industry applications[J].IEEE Transactions on Industrial Informatics,2018,14(7):3226-3234.DOI: 10.1109/TII.2018.2811377.
[13]BIONDO A E,PLUCHINO A,RAPISARDA A,et al.Are random trading strategies more successful than technical ones?[J].PLoS ONE,2013,8(7):e68344.DOI: 10.1371/journal.pone.0068344.
[14]DENG Y,BAO F,KONG Y Y,et al.Deep direct reinforcement learning for financial signal representation and trading[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(3):653-664.DOI: 10.1109/TNNLS.2016.2522401.
[15]GREFF K,SRIVASTAVA R K,KOUTNÍK J,et al.LSTM:a search space odyssey[J].IEEE Transactions on Neural Networks and Learning Systems,2017,28(10):2222-2232.DOI: 10.1109/TNNLS.2016.2582924.
[16]LIU J X,ZHANG J L,LUO Y L,et al.Mass spectral substance detections using long short-term memory networks[J].IEEE Access,2019,7:10734-10744.DOI: 10.1109/ACCESS.2019.2891548.
[17]FISCHER T,KRAUSS C.Deep learning with long short-term memory networks for financial market predictions[J].European Journal of Operational Research,2018,270(2):654-669.DOI: 10.1016/j.ejor.2017.11.054.
[18]CHANG X J,YU Y L,YANG Y,et al.Semantic pooling for complex event analysis in untrimmed videos[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(8):1617-1632.DOI: 10.1109/TPAMI.2016.2608901.
[19]PALANGI H,DENG L,SHEN Y L,et al.Deep sentence embedding using long short-term memory networks:analysis and application to information retrieval[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2016,24(4):694-707.DOI: 10.1109/TASLP.2016.2520371.
[20]ALLEN F,KARJALAINEN R.Using genetic algorithms to find technical trading rules[J].Journal of Financial Economics,1999,51(2):245-271.DOI: 10.1016/S0304-405X(98)00052-X.
[21]PATEL J,SHAH S,THAKKAR P.Predicting stock and stock price index movement using trend deterministic data preparation and machine learning techniques[J].Expert Systems with Applications,2015,42(1):259-268.DOI: 10.1016/j.eswa.2014.07.040.
[22]DIXON M,KLABJAN D,BANG J H.Classification-based financial markets prediction using deep neural networks[J].Algorithmic Finance,2017,6(3/4):67-77.DOI: 10.3233/AF-170176.
[23]ARÉVALO A,NIÁO J,HERNÁNDEZ G,et al.High-frequency trading strategy based on deep neural networks[C]//InternationIntelligent Computing Methodologies:12th International Conference,ICIC 2016,Lanzhou,China,August 2-5,2016,Proceedings,Part III.Berlin:Springer,2016:424-436.DOI: 10.1007/978-3-319-42297-8_40.
[24]CAI X G,HU S,LIN X L.Feature extraction using restricted Boltzmann machine for stock price prediction[C]//2012 IEEE International Conference on Computer Science and Automation Engineering:Volume 3.Piscataway,NJ:IEEE Press,2012:80-83.DOI: 10.1109/CSAE.2012.6272913.
[25]CHEN K,ZHOU Y,DAI F Y.A LSTM-based method for stock returns prediction:a case study of China stock market[C]//2015 IEEE International Conference on Big Data.Piscataway,NJ:IEEE Press,2015:2823-2824.DOI: 10.1109/BigData.2015.7364089.
[26]张金磊,罗玉玲,付强.基于门控循环单元神经网络的金融时间序列预测[J].广西师范大学学报(自然科学版),2019,37(2):82-89.DOI: 10.16088/j.issn.1001-6600.2019.02.010.
[27]LIN C S,CHIU S H,LIN T Y.Empirical mode decomposition-based least squares support vector regression for foreign exchange rate forecasting[J].Economic Modelling,2012,29(6):2583-2590.DOI: 10.1016/j.econmod.2012.07.018.
[28]SEZER O B,GUDELEK M U,OZBAYOGLU A M.Financial time series forecasting with deep learning:a systematic literature review:2005-2019[J].Applied Soft Computing,2020,90:106181.DOI: 10.1016/j.asoc.2020.106181.
[29]LIU J X,SUN T N,LUO Y L,et al.Financial data forecasting using optimized echo state network[C]//Neural Information Processing:25th International Conference,ICONIP 2018,Siem Reap,Cambodia,December 13-16,2018,Proceedings,Part V.Berlin:Springer,2018:138-149.DOI: 10.1007/978-3-030-04221-9_13.
[1] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2021, 39(2): 1-12.
[2] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2021, 39(2): 32-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!