《广西师范大学学报》(哲学社会科学版) ›› 2019, Vol. 37 ›› Issue (3): 42-49.doi: 10.16088/j.issn.1001-6600.2019.03.005

• • 上一篇    

基于双空间PSO算法的四旋翼无人机自抗扰控制器优化设计

陈林奇,李廷会*   

  1. 广西师范大学电子工程学院,广西桂林541004
  • 发布日期:2019-07-12
  • 通讯作者: 李廷会(1971—),男(壮族),广西靖西人,广西师范大学教授,博士。E-mail:tinghuili@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(61264008)

ADRC Controller Optimization Design Based on Two-space PSO Algorithm for Quad-rotor UAV

CHEN Linqi, LI Tinghui*   

  1. College of Electronic Engineering,Guangxi Normal University,Guilin Guangxi 541004,China
  • Published:2019-07-12

摘要: 四旋翼无人机自抗扰控制器所需的参数较多,传统PSO算法虽然可以对控制器的参数进行有效的整定,但需要的粒子群数量较大,寻优速度也比较慢。本文在传统PSO算法的基础上,根据自抗扰控制器的特点,将所需整定的参数分为两组,从两个空间里分别初始化各自的粒子群,并进行交叉寻优,形成一种双空间PSO算法,对四旋翼无人机自抗扰控制器进行优化。仿真结果表明,相比传统的PSO算法,双空间PSO算法所需粒子群数量少,寻优速度更快,而且经过双空间PSO算法优化后的自抗扰控制器具有更小的误差和更快的收敛速度。

关键词: PSO算法, 双空间, 自抗扰控制, 参数整定, 控制优化

Abstract: The traditional quad-rotor UAV active disturbance rejection controller(ADRC)requires many parameters, and the traditional PSO algorithm can effectively set the parameters of the controller, but it requires a large number of particle groups and slows down the optimization speed. In this paper, based on the traditional PSO algorithm, according to the characteristics of the ADRC, the ADRC parameters are divided into two groups, and initialized the particle groups in two spaces, and cross-optimization is carried out to form a two-space PSO algorithm. Simulation results show that, compared with the traditional PSO algorithm, the two-space PSO algorithm requires fewer particle groups and has a faster optimization speed, so the ADRC optimized by the two-space PSO algorithm has a smaller error and a faster convergence speed.

Key words: PSO algorithm, two-space, ADRC, parameter tuning, control optimization

中图分类号: 

  • TP242
[1] 王丽君,李擎,童朝南,等.时滞系统的自抗扰控制综述[J].控制理论与应用,2013,30(12):1521-1533.DOI: 10.7641/CTA.2013.31058.
[2] GAO Zhiqiang.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the 2003 American Control Conference.Piscataway NJ:IEEE Press,2003:4989-4996.DOI:10.1109/ACC.2003.1242516.
[3] FU Caifen,TAN Wen.A new method to tune linear active disturbance rejection[C]//Proceedings of the 2016 American Control Conference.Piscataway NJ:IEEE Press,2016:1560-1565.DOI:10.1109/ACC.2016.7525138.
[4] 朱启轩,张红刚,高军科.光电稳定平台神经网络自抗扰控制方法[J].电光与控制,2018,25(3):10-14.DOI: 10.3969/j.issn.1671-637X.2018.03.003.
[5] 齐晓慧,李杰,韩帅涛.基于BP神经网络的自适应自抗扰控制及仿真[J].兵工学报,2013,34(6):776-782.DOI: 10.3969/j.issn.1000-1093.2013.06.019.
[6] KENNEDY J,EBERHART R.Particle swarm optimization[C]//Proceedings of 1995 IEEE International Conference on Neural Networks.Piscataway NJ:IEEE Press,1995:1942-1948.DOI: 10.1109/ICNN.1995.488968.
[7] 武俊峰,姜欣辰.基于粒子群算法的直线二级倒立摆LQR控制器优化控制方法[J].黑龙江科技大学学报,2018,28(5):570-576.DOI:10.3969/j.issn.2095-7262.2018.05.017.
[8] 胡丹丹,张宇辰.基于改进粒子群算法的四旋翼自抗扰控制器优化设计[J/OL].计算机应用研究,2019,36(7) (2018-4-12)[2018-10-24].http://www.arocmag.com/article/02-2019-07-022.html.DOI:10.3969/j.issn.1001-3695.2018.01.0026.
[9] 楚玉华,黄巧亮.基于双粒子群算法的船舶电力系统网络重构[J].电子设计工程,2017,25(5):37-41.DOI: 10.14022/j.cnki.dzsjgc.2017.05.010.
[10]黄文俊.基于优化ADRC的伺服控制技术的研究与开发[D].无锡:江南大学,2017.
[11]王建民,邓展,杨刚.SOA寻优算法在磨机给料控制系统的研究与仿真[J].华北理工大学学报(自然科学版),2017, 39(4):94-100.DOI:10.3969/j.issn.2095-2716.2017.04.016.
[12]韩京清.自抗扰控制技术:估计补偿不确定因素的控制技术[M].北京:国防工业出版社,2008.
[13]XU Rong,ZGNER .Sliding mode control of a class of underactuated systems[J].Automatica,2008, 44(1):233-241.DOI:10.1016/j.automatica.2007.05.014.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发