Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2019, Vol. 37 ›› Issue (3): 96-105.doi: 10.16088/j.issn.1001-6600.2019.03.011
HONG Lingling, YANG Qigui*
CLC Number:
[1] LORENZ E N. Deterministic non-periodic flow[J]. Journal of the Atmospheric Sciences,1963,20:130-141.DOI:10.1177/0309133308091948. [2] RSSLER O E. An equation for hyperchaos[J]. Physics Letters A, 1979, 71A(2):155-157. DOI:10.1016/03759601(79)90150-6. [3] KAPITANIAK T, CHUA L O, ZHONG Guoqun. Experimental hyperchaos in coupled Chua’s circuits[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Application,1994,41(7):499-503. DOI:10.1109/81.298367. [4] YANG Qigui, LIU Yongjian. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci[J]. Journal of Mathematical Analysis and Applications,2009, 360(1):293-306. DOI:10.1016/jmaa.2009.06.051. [5] LI Yuxia, LIU Xuezhen, CHEN Guanrong. A new hyperchaotic Lorenz-type system: Generation, analysis, and implementation[J]. International Journal of Circuit Theory and Applications, 2011,39(8):865-879. DOI:10.1002/cta.673. [6] LI Chunbiao, SPROTT J C. Coexisting hidden attractors in a 4-D simplified Lorenz system[J]. International Journal of Bifurcation and Chaos,2014,24(3):1450034. DOI:10.1142/S0218127414500345. [7] CHEN Yuming, YANG Qigui. A new Lorenz-type hyperchaotic system with a curve of equilibria[J]. Mathematics and Computers in Simulation, 2015,112:40-55. DOI:10.1016/j.matcom.2014.11.006. [8] CHEN Lijuan, TANG Song, LI Qingdu, et al. A new 4D hyperchaotic system with high complexity[J]. Mathematics and Computers in Simulation, 2018,146:44-56. DOI:10.1016/j.matcom.2017.10.002. [9] YANG Qigui, CHEN Yuming. Complex dynamics in the unified Lorenz-type system[J]. International Journal of Bifurcation and Chaos, 2014,24(4):1450055. DOI:10.1142/S0218127414500552. [10]YANG Qigui, BAI Meili. A new 5D hyperchaotic system based on modified generalized Lorenz system[J]. Nonlinear Dynamic, 2017,88:189-221. DOI:10.1007/s11071-016-3238-7. [11]WOLF A, SWIFT J B. SWINNEY H L,et al. Determining Lyapunov exponents from a time series[J]. Physica D Nonlinear Phenomena, 1985,16(3):285-317. DOI:10.1016/0167-2789(85)90011-9. [12]KUZNETSOV Y A. Elements of applied bifurcation theory[M]. New York: Springer-Verlag, 2004. [13]杨路,张景中,侯晓荣.非线性代数方程组与定理机器证明[M].上海:上海科学与技术出版社,1996:23-25. [14]WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos[M]. 2nd ed. New York: Springer-Verlag, 2003. [15]张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2000. |
No related articles found! |
|