《广西师范大学学报》(哲学社会科学版) ›› 2019, Vol. 37 ›› Issue (3): 1-8.doi: 10.16088/j.issn.1001-6600.2019.03.001

• •    

AGV系统路径规划时间窗模型及算法

许伦辉1,2*,黄宝山1,钟海兴2   

  1. 1.北京理工大学珠海学院工业自动化学院,广东珠海519088;
    2.华南理工大学土木与交通学院,广东广州510641
  • 发布日期:2019-07-12
  • 通讯作者: 许伦辉(1965—),男,江西南康人,华南理工大学教授,博导。E-mail:lhxu@scut.edu.cn
  • 基金资助:
    国家自然科学基金(61263024);广东省自然科学基金(2015A030313797);珠海市重大科技项目(20160308)

Time Window Model and Algorithm with AGV System Path Planning

XU Lunhui1,2*,HUANG Baoshan1,ZHONG Haixing2   

  1. 1. Institute of Industrial Automation, Zhuhai Campus, Beijing Institute of Technology,Zhuhai Guangdong 519088,China;
    2. School of Civil and Traffic Engineering, South China University of Technology,Guangzhou Guangdong 510641,China
  • Published:2019-07-12

摘要: 针对双向单车道的AGV(automated guided vehicle)系统作业场景,考虑到AGV车辆行驶过程中直线和弯道的速度差异,以最小运行代价和优先级相结合为任务生成策略,构建了避免冲突的AGV系统动态路径规划的时间窗模型及其算法流程,为运行总成本最小约束下智能物流和自动化仓储系统中多台AGV协同作业的动态路径规划问题提供了有效方法。经过案例验证,该算法能够有效规划系统中多台AGV协同作业的路径,使系统运行的成本最低,降低仓储系统运行的总成本。

关键词: 动态路径规划, 智能物流, 时间窗, 自动搬运, AGV

Abstract: Considering the AGV vehicle speed difference between straight lines and curves in the process of driving,the time window model of the dynamic route planning of AGV system is established to avoid conflict for the two-way single driving lane AGV system operation scene. Taking the combination with the minimum operation cost and priority as the task generation strategy,the algorithm process for the AGV system dynamic path planning time window model is established, which provides an effective method for dynamic path planning problem for multi-AGV system collaborative operation in intelligent logistics and automated storage system under the restriction to minimize the total cost of operation. Case verification shows that this algorithm can effectively plan the path of multiple AGV cooperative operations in the system,so that the system can run at the lowest total cost and reduce the total cost of running the storage system.

Key words: dynamic route planning, intelligent logistics, time window, automatic handing, automated guided vehicle(AGV)

中图分类号: 

  • TP301.6
[1] 武启平,金亚萍,任平,等. 自动导引车(AGV)关键技术现状及其发展趋势[J]. 制造业自动化,2013,35(5):106-109,121.
[2] 杨璐,汪博涵,张雪洁. 基于A*算法的AGV路径规划研究[J]. 公路与汽运,2014(4):47-49.
[3] 泰应鹏,邢科新,林叶贵,等.多AGV路径规划方法研究[J].计算机科学,2017,44(S2):84-87.
[4] RAJOTIA S,SHANKER K,BATRA J L. A semi-dynamic time window constrained routering strategy in an AGV system[J]. International Journal of Production Research,1998,36(1):35-50.
[5] SHAO Shengjun,XIA Zeyang,CHEN Guodong,et al. A new scheme of multiple automated guided vehicle system for collision and deadlock free[C]//2014 4th IEEE International Conference on Information Science and Technology (ICIST). New York:IEEE,2014:606-610.
[6] DIGANI V,SABATTINI L,SECCHI C,et al. Hierarchical traffic control for partially decentralized coordination of multi AGV systems in industrial environments[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). New York:IEEE,2014:6144-6149.
[7] MIYAMOTO T,INOUE K. Random search for dispatch and conflict-free routing problem of capacitated AGV systems[C]//2013 IEEE International Conference on Systems,Man, and Cybernetics (SMC 2013). New York:IEEE, 2013:1611-1615.
[8] 林清岩. 智能交通中车辆最优路径规划策略研究[D].长春:吉林大学,2013.
[9] 孟凡伟. 带时间窗的AGV车辆蜂群调度优化研究[D].大连:大连理工大学,2012.
[10]蓝志坤,蓝志环. 多AGV系统的动态路径规划算法[J]. 公路交通科技,2012,10:121-125.
[11]赵东雄. 多自动导引小车系统(AGVS)路径规划研究[D].武汉:湖北工业大学,2014.
[12]刘二辉,姚锡凡,蓝宏宇,等.基于改进遗传算法的自动导引小车动态路径规划及其实现[J].计算机集成制造系统,2018,24(6):1455-1467.
[13]杨勇生,崔佳羽,梁承姬,等.基于软时间窗的自动化集装箱码头AGV路径规划[J].广西大学学报(自然科学版),2017,42(5):1793-1801.
[14]梁承姬,沈珊珊,胡文辉.基于路段时间窗考虑备选路径的AGV路径规划[J].工程设计学报,2018,25(2):200-208.
[15]韦燚,刘晓东.集装箱自动化码头AGV带时间约束的路径规划研究[J].新型工业化,2016,6(2):41-45.
[16]张坤. 基于AGV的物流中心货物自动运输路径规划的研究[D].广州:华南理工大学,2017.
[1] 石亚冰, 黄予, 覃晓, 元昌安. 基于优化初始种子新策略的K-Means聚类算法[J]. 《广西师范大学学报》(哲学社会科学版), 2013, 31(4): 33-40.
[2] 曹永春, 邵亚斌, 田双亮, 蔡正琦. 一种基于免疫遗传算法的聚类方法[J]. 《广西师范大学学报》(哲学社会科学版), 2013, 31(3): 59-64.
[3] 张超群, 郑建国, 李陶深. 侦察蜂在人工蜂群算法中的作用[J]. 《广西师范大学学报》(哲学社会科学版), 2013, 31(3): 72-80.
[4] 周艳聪, 顾军华, 董永峰. 逆向二进制防碰撞算法及其FPGA硬件实现[J]. 《广西师范大学学报》(哲学社会科学版), 2013, 31(3): 94-99.
[5] 黄敏, 靳婷, 钟声, 马玉春. 基于改进蚁群算法求解连续空间寻优问题[J]. 《广西师范大学学报》(哲学社会科学版), 2013, 31(2): 34-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发