|
《广西师范大学学报》(哲学社会科学版) ›› 2019, Vol. 37 ›› Issue (3): 106-110.doi: 10.16088/j.issn.1001-6600.2019.03.012
• • 上一篇
张一进1,2
ZHANG Yijin1,2
摘要: 本文研究一类加性白噪声驱动的具有时滞的随机格动力系统的动力学。引入Xρ空间,运用Hilbert空间中的基本等式和Young、Gronwall、Schwarz不等式,证明了随机时滞格点方程解的存在性、唯一性和对初值的连续依赖性,从而得到其解生成连续的无穷维随机动力系统。
中图分类号:
[1] BELL J, COSNER C. Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons [J]. Quarterly of Applied Mathematics, 1984,42:1-14. [2] CHUA L O, ROSKA T. The CNN paradigm [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993,40:147-156. [3] KEENER J P. The effects of discrete gap junction coupling on propagation in myocardium [J]. Journal of Theoretical Biology, 1991,148:49-82. [4] ERNEUX T, NICOLIS G. Propagating waves in discrete bistable reaction diffusion systems[J]. Physica D,1993,67:237-244. [5] BATES P W, LISEI H, LU K N. Attractors for stochastic lattice dynamical systems[J]. Stochastics and Dynamics, 2006,6:1-21. [6] HALE J K, VERDUYN LUNEL S M. Introduction to functional differential equations[M]. New York: Springer-Verlag,1993. [7] MOHAMMED S E A. Stochastic functional differential equations[M]. Boston: Pitman Advanced Publishing Program,1984. [8] WU J. Theory and applications of partial functional differential equations[M]. New York: Springer-Verlag, 1996. [9] ARNOLD L. Random dynamical systems[M]. Berlin:Springer-Verlag,1998. [10]ZHAO W, ZHANG Y. Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space, pρ [J]. Applied Mathematics & Computation, 2016, 291:226-243. |
[1] | 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 《广西师范大学学报》(哲学社会科学版), 2019, 37(3): 96-105. |
|
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |