《广西师范大学学报》(哲学社会科学版) ›› 2019, Vol. 37 ›› Issue (3): 106-110.doi: 10.16088/j.issn.1001-6600.2019.03.012

• • 上一篇    

Xρ空间上随机时滞格系统的随机动力学

张一进1,2   

  1. 1.重庆邮电大学复杂系统智能分析与决策重庆高校重点实验室,重庆400065;
    2.重庆邮电大学工业物联网与网络化控制教育部重点实验室,重庆400065
  • 发布日期:2019-07-12
  • 通讯作者: 张一进(1978—),男,陕西咸阳人,重庆邮电大学副教授。E-mail: zhangyj@cqupt.edu.cn
  • 基金资助:
    国家自然科学基金(11701060)

Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space

ZHANG Yijin1,2   

  1. 1.Chongqing Key Lab of Intelligent Analysis and Decision on Complex Systems, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
    2.Key Laboratory of Industrial Internetof Things and Networked Control, Ministry of Education, Chongqing University of Posts and Telecommunications,Chongqing 400065, China
  • Published:2019-07-12

摘要: 本文研究一类加性白噪声驱动的具有时滞的随机格动力系统的动力学。引入Xρ空间,运用Hilbert空间中的基本等式和Young、Gronwall、Schwarz不等式,证明了随机时滞格点方程解的存在性、唯一性和对初值的连续依赖性,从而得到其解生成连续的无穷维随机动力系统。

关键词: 随机动力系统, 时滞方程, 格系统, 连续依赖性, 动力学

Abstract: The dynamics of a class of stochastic lattice dynamical systems with time delay driven by additive white noise is studied. Xρ space is introduced, basic equalities, Young inequality, Gronwall inequality and Schwarz inequality are applied. The existence, uniqueness and continuous dependence on the initial data of solutions to the stochastic delay lattice equations with additive noise are presented. Then a continuous infinite dimensional random dynamical system generated by the solutions is obtained.

Key words: random dynamical system, delay equation, lattice systems, continuous dependence, dynamics

中图分类号: 

  • O175.2
[1] BELL J, COSNER C. Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons [J]. Quarterly of Applied Mathematics, 1984,42:1-14.
[2] CHUA L O, ROSKA T. The CNN paradigm [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1993,40:147-156.
[3] KEENER J P. The effects of discrete gap junction coupling on propagation in myocardium [J]. Journal of Theoretical Biology, 1991,148:49-82.
[4] ERNEUX T, NICOLIS G. Propagating waves in discrete bistable reaction diffusion systems[J]. Physica D,1993,67:237-244.
[5] BATES P W, LISEI H, LU K N. Attractors for stochastic lattice dynamical systems[J]. Stochastics and Dynamics, 2006,6:1-21.
[6] HALE J K, VERDUYN LUNEL S M. Introduction to functional differential equations[M]. New York: Springer-Verlag,1993.
[7] MOHAMMED S E A. Stochastic functional differential equations[M]. Boston: Pitman Advanced Publishing Program,1984.
[8] WU J. Theory and applications of partial functional differential equations[M]. New York: Springer-Verlag, 1996.
[9] ARNOLD L. Random dynamical systems[M]. Berlin:Springer-Verlag,1998.
[10]ZHAO W, ZHANG Y. Compactness and attracting of random attractors for non-autonomous stochastic lattice dynamical systems in weighted space, pρ [J]. Applied Mathematics & Computation, 2016, 291:226-243.
[1] 洪玲玲,杨启贵. 新四维超混沌系统的复杂动力学研究[J]. 《广西师范大学学报》(哲学社会科学版), 2019, 37(3): 96-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发