广西师范大学学报(哲学社会科学版) ›› 2024, Vol. 60 ›› Issue (3): 68-85.doi: 10.16088/j.issn.1001-6597.2024.03.007

• 经济与管理 • 上一篇    下一篇

农村普惠金融发展的空间关联网络及驱动因素研究——兼论农村普惠金融高质量发展的推进路径

王小华1, 杨玉琪2   

  1. 1.西南大学 普惠金融与农业农村发展研究中心, 重庆 400715;
    2.山东大学 经济学院,山东济南 250100
  • 收稿日期:2023-05-15 出版日期:2024-05-25 发布日期:2024-05-17
  • 作者简介:王小华(1986—),男,重庆人,西南大学经济管理学院教授,西南大学普惠金融与农业农村发展研究中心研究员,研究领域:农村金融与普惠金融、数字金融与金融科技。
  • 基金资助:
    国家社会科学基金重大项目“实现巩固拓展脱贫攻坚成果同乡村振兴有效衔接研究”(21ZDA062);国家社会科学基金一般项目“金融科技增强金融普惠性的理论逻辑与路径优化研究”(21BJL086);国家社会科学基金一般项目“数字普惠金融背景下我国农村金融消费者保护测度、影响及其提升研究”(21BJY042)

A Study on the Spatial Correlation Network and Driving Factors of Rural Inclusive Finance Development —On the Promotion Path of High Quality Development of Rural Inclusive Finance

WANG Xiao-hua1, YANG Yu-qi2   

  1. 1. Research Center for Inclusive Finance and Agricultural and Rural Development, Southwest University, Chongqing 400715;
    2. School of economics, Shandong University, Jinan 250100, China
  • Received:2023-05-15 Online:2024-05-25 Published:2024-05-17

摘要: 推动农村普惠金融高质量发展,为“中小微弱”提供有效的金融服务,创造良好环境促使农村金融高质量服务实体经济,是解决我国经济发展不平衡不充分问题的关键环节,更是实现包容性增长、促进社会和谐稳定的应有之义。通过构建农村普惠金融评价指标体系,并基于2008—2018年中国30个省(自治区、直辖市)的数据测算农村普惠金融指数,同时利用社会网络分析(SNA)、空间杜宾模型(SDM)分析农村普惠金融发展的空间关联网络特征及其驱动因素,研究发现:(1)农村普惠金融空间关联网络的关联关系数及网络密度均呈现先递增后下降的趋势,并于2011年达到峰值,整体关联网络通达性好,同时又存在“等级森严”的网络结构,所有网络特征指标均较为稳定。(2)上海、江苏、北京、浙江、山东、广东6个省份的度数中心度、接近中心度、中间中心度均最高,一直处于空间关联网络的核心区,掌控和支配能力更强,且对其他省份金融资源具有极强的虹吸作用,导致农村普惠金融的发展仍然处于集聚阶段。(3)经济发展水平、人口密度、政府干预程度、产业结构、银行业竞争是影响农村普惠金融发展的五个重要变量。从直接效应看,经济发展、高人口密度、银行业竞争均促进本地农村普惠金融的发展;从间接效应看,某地人口密集、第一产业占比过高、激烈的银行竞争均会抑制周边地区农村普惠金融的发展,而政府加大对某地的财政支出也可以对周边地区产生正向的溢出效应。

关键词: 农村金融, 普惠金融高质量发展, 空间关联网络, 社会网络分析

Abstract: Promoting the high-quality development of inclusive finance in rural areas so as to provide effective financial services for small and medium-sized enterprises and enhance the high-quality service of rural finance to the real economy is a key link in solving the problem of imbalanced and insufficient economic development in China. It is also necessary to achieve inclusive growth and promote social harmony and stability. By constructing an evaluation index system for rural inclusive finance and calculating the rural inclusive finance index based on data from 30 provinces (autonomous regions, municipalities directly under the central government) in China from 2008 to 2018, and employing social network analysis (SNA) and spatial Durbin model (SDM) to analyze the spatial correlation network characteristics and driving factors of rural inclusive finance development, the study finds that: (1) The number of correlation relationships and network density in the spatial correlation network of rural inclusive finance show a shift from rising to declining, and the peak is available in 2011. The overall connectivity of the correlation network is good with a “hierarchical” network structure, and all network characteristic indicators are relatively stable. (2) The degree centrality, proximity centrality, and intermediate centrality in six regions in Shanghai, Jiangsu, Beijing, Zhejiang, Shandong, and Guangdong stay at the top and continuously in the core area of the spatial correlation network with stronger control and dominance abilities, thus bearing a strong siphon effect on financial resources in other regions, resulting in the agglomeration of rural inclusive finance. (3) The level of economic development, population density, degree of government intervention, industrial structure, and banking competition are five important variables that affect the development of rural inclusive finance. From the perspective of direct effects, economic development, high population density, and moderate banking competition all promote the development of rural inclusive finance; from the perspective of indirect effects, population agglomeration, a high proportion of the primary industry, and intense banking competition all inhibit the development. In addition, increasing government fiscal expenditure on a certain area also bears a positive spillover effect on its surrounding areas.

Key words: rural finance, high quality development of inclusive finance, spatial correlation network, social network analysis

中图分类号:  F832.35

[1] 王小华,韩林松,温涛.惠农贷的精英俘获及其包容性增长效应研究[J].中国农村经济,2021(3):106-127.
[2] Levine R E. Finance and growth: theory and evidence[J]. Handbook of Economic Growth,2005,1:865-934.
[3] 张勋,万广华,张佳佳,等.数字经济、普惠金融与包容性增长[J].经济研究,2019(8):71-86.
[4] Rajan R G , Zingales L.Financial dependence and growth[J].American Economic Review,1998,88(3):559-586.
[5] Meniago C, Asongu S A. Revisiting the finance-inequality nexus in a panel of African countries[J]. Research in International Business and Finance, 2018,46(12): 399-419.
[6] 王小华,程琳.数字普惠金融与城乡收入差距:机遇还是鸿沟[J].广西师范大学学报(哲学社会科学版),2022(5):127-146.
[7] 李建军,彭俞超,马思超.普惠金融与中国经济发展:多维度内涵与实证分析[J].经济研究,2020(4):37-52.
[8] 王国刚.金融脱实向虚的内在机理和供给侧结构性改革的深化[J].中国工业经济,2018(7):5-23.
[9] 尹志超,彭嫦燕,里昂安吉拉.中国家庭普惠金融的发展及影响[J].管理世界,2019(2):74-87.
[10] Zins A ,Weill L. The determinants of financial inclusion in Africa[J]. Review of Development Finance, 2016(1):46-57.
[11] Sarma M. Index of financial inclusion [R].Indian Council for Research on International Economic Relations Working Paper,2008,No.215.
[12] Arora R U. Measuring financial access [R]. Griffith University,Discussion Paper in Economics,2010, No. 2010-07.
[13] 刘亦文,丁李平,李毅,等.中国普惠金融发展水平测度与经济增长效应[J].中国软科学,2018(3):36-46.
[14] 王雪,何广文.中国县域普惠金融发展的空间非均衡及收敛性分析[J].现代经济探讨,2020(2):41-49.
[15] Sarma M ,Pais J. Financial inclusion and development[J]. Journal of International Development, 2011, 23(5):613-628.
[16] 沈丽,张好圆,李文君.中国普惠金融的区域差异及分布动态演进[J].数量经济技术经济研究,2019(7):62-80.
[17] 粟芳,方蕾.中国农村金融排斥的区域差异:供给不足还是需求不足?——银行、保险和互联网金融的比较分析[J].管理世界,2016(9):70-83.
[18] 耿良,张馨月.普惠金融非均衡发展的影响因素研究——基于空间溢出视角的实证分析[J].华东经济管理,2019(5):108-115.
[19] 胡宗义,李明月.普惠金融发展的空间关联及溢出效应——基于社会网络视角的分析[J].华东经济管理,2018(8):5-12.
[20] 顾宁,张甜.普惠金融发展与农村减贫:门槛、空间溢出与渠道效应[J].农业技术经济,2019(10):74-91.
[21] 张林,张雯卿.普惠金融与农村产业融合发展的耦合协同关系及动态演进[J].财经理论与实践,2021(2):2-11.
[22] 张林,李海央,梁义娟.农村金融高质量发展:水平测度与时空演变[J].中国农村经济,2023(1):115-139.
[23] Zipf G K. The P1 P2/D hypothesis: on the intercity movement of persons [J]. American Sociological Review, 1946(6):677-686.
[24] 汤放华,汤慧,孙倩,等.长江中游城市集群经济网络结构分析[J].地理学报,2013(10):1357-1366.
[25] 刘军. 整体网分析讲义——UCINET 软件实用指南[M]. 上海:格致出版社,2009.
[26] 张龙耀,邢朝辉.中国农村数字普惠金融发展的分布动态、地区差异与收敛性研究[J].数量经济技术经济研究,2021(3):23-42.
[27] 王小华,温涛,王定祥.县域农村金融抑制与农民收入内部不平等[J].经济科学,2014(2):44-54.
[28] 张珩,罗剑朝,郝一帆.农村普惠金融发展水平及影响因素分析——基于陕西省107家农村信用社全机构数据的经验考察[J].中国农村经济,2017(1):2-15,93.
[29] Priyadarshee A, Hossain F,Arun T. Financial inclusion and social protection: a case for India post[J]. Competition & Change,2010,14(3-4):324-342.
[30] Chong T L,Lu L,Ongena S. Does banking competition alleviate or worsen credit constraints faced by small-and medium-sized enterprises? evidence from China[J]. Journal of Banking & Finance, 2013,37(9):3412-3424.
[31] 孟娜娜,粟勤,雷海波.金融科技如何影响银行业竞争[J].财贸经济,2020(3):66-79.
[32] 张林,温涛.数字普惠金融如何影响农村产业融合发展[J].中国农村经济,2022(7):59-80.
[33] 周顺兴,林乐芬.银行业竞争提升了金融服务普惠性吗?——来自江苏省村镇银行的证据[J].产业经济研究,2015(6):11-20.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发