Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition) ›› 2023, Vol. 59 ›› Issue (6): 66-75.doi: 10.16088/j.issn.1001-6597.2023.06.007

Previous Articles     Next Articles

Deep Learning Evaluation: Theoretical Models, Related Technologies and Practical Cases

WANG Meng-ke, WANG Zhuo, CHEN Zeng-zhao   

  1. Faculty of Artificial Intelligence in Education, Central China Normal University, Wuhan 430079, China
  • Received:2022-07-02 Online:2023-11-15 Published:2023-12-22

Abstract: Deep learning is a general trend of international education reform and a core requirement for the development of core competencies. How to evaluate deep learning is a challenging task related to the development of deep learning. Bloom’s taxonomy of educational goals, Weber’s depth of knowledge model, and the multi-dimensional theoretical system of deep learning evaluation provide a solid theoretical basis for deep learning evaluation. Intelligent technologies such as facial expression recognition, speech recognition, natural language processing, and block chain have great application prospects in the collection, processing and storage of evaluation information. The results of the case studies demonstrate that technology-enabled deep learning assessments are playing an increasingly important role in the context of online learning. Looking forward to the future of intelligent deep learning evaluation, we conclude that quantitative ethnographic methods provide methodological guidance for deep learning evaluation.

Key words: deep learning, depth of knowledge, performance evaluation, intelligent technology, quantitative ethnography

CLC Number:  G442
[1] Marton F,Sáaljö R.On qualitative differences in learning:Ⅱ—Outcome as a function of the learner’s conception of the task[J].British Journal of educational Psychology,1976(2):115-127.
[2] Dinsmore D L,Alexander P A.A critical discussion of deep and surface processing:what it means,how it is measured,the role of context,and model specification[J].Educational psychology review,2012(4):499-567.
[3] 吴忭,胡艺龄,赵玥颖.如何使用数据:回归基于理解的深度学习和测评——访国际知名学习科学专家戴维·谢弗[J].开放教育研究,2019(1):4-12.
[4] 陈静静,谈杨.课堂的困境与变革:从浅表学习到深度学习——基于对中小学生真实学习历程的长期考察[J].教育发展研究,2018(Z2):90-96.
[5] Jensen E,Nickelsen LeAnn.深度学习的7种有力策略[M].温暖,译.上海:华东师范大学出版社,2009:11-12.
[6] 何克抗.深度学习:网络时代学习方式的变革[J].教育研究,2018(5):111-115.
[7] Herman J, Linn R.On the road to assessing deeper learning:The status of Smarter Balanced and PARCC assessment consortia[R].Los Angeles,CA:University of California,CRESST,2013:10-12.
[8] 张浩,吴秀娟,王静.深度学习的目标与评价体系构建[J].中国电化教育,2014(7):51-55.
[9] 周文叶.中小学表现性评价的理论与技术[M].上海:华东师范大学出版社,2014:53.
[10] 周文叶.表现性评价:指向深度学习[J].教育测量与评价,2018(7):1.
[11] Borich G D,Tombari M L. Educational psychology[M]. New York : Longman,1997:429.
[12] 刘清堂,毛刚,杨琳,等.智能教学技术的发展与展望[J].中国电化教育,2016(6):8-15.
[13] 刘革平,黄智兴,邱玉辉.基于数据挖掘的远程学习过程评价系统设计与实现[J].电化教育研究,2005(7):67-69.
[14] 牟智佳.“人工智能+”时代的个性化学习理论重思与开解[J].远程教育杂志,2017(3):22-30.
[15] 华璐璐.人工智能促进教学变革研究[D]. 徐州:江苏师范大学,2018.
[16] 刘勇,李青,于翠波.深度学习技术教育应用:现状和前景[J].开放教育研究,2017(5):113-120.
[17] 杨现民,李新,吴焕庆,等.区块链技术在教育领域的应用模式与现实挑战[J].现代远程教育研究,2017(2):34-45.
[18] Swart A J. Evaluation of final examination papers in engineering: a case study using Bloom’s taxonomy[J]. IEEE Transactions on Education, 2009(2): 257-264.
[19] Aninditya A, Hasibuan M A, Sutoyo E. Text mining approach using TF-IDF and naive Bayes for classification of exam questions based on cognitive level of Bloom’s taxonomy[C]//2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). IEEE, 2019: 112-117.
[20] 刘丽丽.基于SOLO分类理论的小学生深度学习评价研究[D].上海:华东师范大学,2017.
[21] Liu S,Liu S,Liu Z,et al.Automated detection of emotional and cognitive engagement in MOOC discussions to predict learning achievement[J].Computers&Education,2022,181:104461.
[22] Crosson A C, McKeown M G,Ward Jr A K.An innovative approach to assessing depth of knowledge of academic words[J].Language Assessment Quarterly,2019(2):196-216.
[23] 凌建勋,凌文辁,方俐洛.深入理解质性研究[J].社会科学研究,2003(1):151-153.
[24] Wise A F, Shaffer D W. Why theory matters more than ever in the age of big data[J].Journal of Learning Analytics,2015(2):5-13.


[1] XU Guo-chong, LU Zhi-qing, PAN Jin-xian. Towards Governance Performance Evaluation: A Three-Dimensional Analysis Based on Field, Value and Role [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2023, 59(1): 109-119.
[2] XU Feng-hua, YU Le. Pedagogical Research on Deep Learning: Origin, Connotation and Prospect [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2022, 58(5): 147-156.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 1 -10 .
[2] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 11 -17 .
[3] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 18 -24 .
[4] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 25 -30 .
[5] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 31 -36 .
[6] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 37 -41 .
[7] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 42 -47 .
[8] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 48 -54 .
[9] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 55 -60 .
[10] . [J]. Journal of Guangxi Teachers Education University (Philosophy and Social Sciences Edition), 2018, 54(3): 61 -66 .