广西师范大学学报(哲学社会科学版) ›› 2024, Vol. 60 ›› Issue (5): 76-86.doi: 10.16088/j.issn.1001-6597.2024.05.007

• 教育科学 • 上一篇    下一篇

STEM教育中的跨学科概念学习和理解

杨韵莹   

  1. 华南师范大学 教育技术学院, 广东 广州 510631
  • 收稿日期:2024-03-11 出版日期:2024-09-25 发布日期:2024-09-13
  • 作者简介:杨韵莹, 华南师范大学教育信息技术学院特聘副研究员,哲学博士,研究方向:跨学科STEM 融合教育。
  • 基金资助:
    广东省基础与应用基础研究基金(青年基金项目)“人际大脑同步在跨学科学习中的作用机制”(2023A1515111160)

Interdisciplinary Conceptual Learning and Understanding in STEM Education

YANG Yun-ying   

  1. School of Information Technology in Education, South China Normal University, Guangzhou 510631, China
  • Received:2024-03-11 Online:2024-09-25 Published:2024-09-13

摘要: STEM教育作为科学实践与自我探索的教育主阵地,其教育品质的提升对于培养具有跨学科素养和创新能力的后备科技人才尤为关键。然而,在实践中发现,尽管许多STEM教学活动涉及多个学科领域,但在实际操作中往往聚焦于单一技能训练或项目完成,跨学科思维能力的培养并未给予充分的关注,导致学生难以建立起各学科知识之间的有机联系,无法实现从单一学科视角向跨学科思维模式的转变。因此,一种具有前瞻性的教学策略应运而生,其核心旨在STEM实践中深入思考和提炼跨学科概念。通过这一方法,学生能够形成系统的科学认知框架,建立起灵活高效的多学科知识连接体系,并掌握贯通多个学科领域的共性规律和基本原理,增强知识的迁移和综合能力。这一创新理念不仅丰富和完善了STEM教育的教学手段和理论基础,同时为教师提供了可操作性强的具体教学指导,具有重要的理论意义和实践价值。

关键词: STEM教育, 科学实践, 跨学科概念, 概念隐喻, 具身认知

Abstract: As STEM education is the primary arena for scientific exploration and self-discovery, its enhancement and exploitation of its potential are critically important for cultivating scientific and technological reserve force with interdisciplinary literacy and innovation ability. However, it has been observed that while numerous STEM teaching activities involve multiple disciplines, they often focus on isolated skill training or project completion at the operational level, neglecting the cultivation of interdisciplinary thinking skills. This oversight results in students’ struggling to establish organic connections between knowledge from different subjects and their failing to transform from single-discipline perspectives to an interdisciplinary mindset. To address this issue, this paper proposes a forward-looking instructional strategy where the crux lies in deep reflection and distillation of interdisciplinary concepts within STEM practices. By adopting this approach, students can develop a systematic cognitive framework, construct a flexible and efficient multidisciplinary knowledge linkage system, and master the common laws and basic principles that cut across multiple subject areas, thus enhancing the transferability of knowledge and the ability to synthesize. This innovative concept not only enriches and strengthens the pedagogical methods and theoretical underpinnings of STEM education but also provides educators with practical and actionable guidelines for instruction, thus bearing important theoretical significance and practical value.

Key words: STEM education, scientific practice, interdisciplinary concepts, conceptual metaphors, embodied cognition

中图分类号:  G42

[1] 胡卫平.STEM教育与科技创新人才培养[J].中国民族教育,2018(Z1):16-18.
[2] Fick S J, Arias A M. A review of literature that uses the lens of the next generation science crosscutting concepts: 2012-2019 [J]. Journal of Research in Science Teaching, 2022(59):883-929.
[3] 高潇怡,孙慧芳.当前国际科学课程标准中的跨学科概念探析——以美国、澳大利亚、加拿大、新加坡为例[J].教育学报,2019(6):25-33.
[4] 李瑞雪,王健.美国科学课程中的跨学科概念:演进、实践及启示[J].外国教育研究,2021(4):102-117.
[5] 吕立杰.大概念课程设计的内涵与实施[J].教育研究,2020(10):53-61.
[6] 谢绍平,董秀红.美国新《K-12科学教育框架》解读[J].外国中小学教育,2013(4):55-61.
[7] 刘徽.学习就是在大脑中进行概念架构——读《学习的本质》[J].现代教学,2019(23):77-79.
[8] Fick S J. What does three-dimensional teaching and learning look like? Examining the potential for crosscutting concepts to support the development of science knowledge[J]. Science Education, 2018(1):5-35.
[9] 杨文正,许秋璇.融入“大概念”的STEAM跨学科教研:模式构建与实践案例[J].远程教育杂志,2021(2):103-112.
[10] Papadouris N, Vokos S, Constantinou C P. The pursuit of a “better” explanation as an organizing framework for science teaching and learning[J]. Science Education,2018(2): 219-237.
[11] Lakoff G, Johnson M. Metaphors we live by [M]. London: University of Chicago Press,2003.
[12] Rivet A E,Weiser G,Lyu X, et al. What are crosscutting concepts in science? Four metaphorical perspectives [M]. Singapore: International Society of the Learning Sciences, 2016.
[13] 高云峰.科学教育中的跨学科概念:系统与模型[J].湖北教育(科学课),2022(8):5-9.
[14] Gallese V, Lakoff G. The Brain’s concepts: the role of the sensory-motor system in conceptual knowledge[J]. Cognitive neuropsychology, 2005(3-4): 455-479.
[15] Lebois L A,Wilson-Mendenhall C D, Barsalou L W. Are automatic conceptual cores the gold standard of semantic processing? The context-dependence of spatial meaning in grounded congruency effects[J]. Cognitive Science, 2014(8):1764-1801.
[16] Moulding B, Bybee R W. Teaching science is phenomenal: using phenomena to engage students in three-dimensional science performances consistent with the NRC Framework and NGSS: organizing student science performances using 5E and gather, reason, communicate instructional sequences [M]. ELM Tree Publishing, 2017.
[17] Science SCASS States. Using crosscutting concepts to prompt student responses[R]. CCSSO Science SCASS Committee on Classroom Assessment, 2018.
[18] 董艳,夏亮亮,王良辉.新课标背景下的跨学科学习:内涵、设置逻辑、实践原则与基础[J].现代教育技术,2023(2):24-32.
[19] 高潇怡,孙慧芳.小学科学教师的跨学科概念理解:水平、特征与建议[J].教师教育研究,2020(6):68-75.
[1] 董艳, 吴楠, 夏亮亮. 组织与人力视角下的STEM教育师资发展与新质提升[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(5): 66-75.
[2] 王卓玉, 于灏媛, 王琳琳. 面向新质人才需求的STEAM培育机制研究[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(5): 87-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发