|
广西师范大学学报(哲学社会科学版) ›› 2021, Vol. 39 ›› Issue (2): 101-111.doi: 10.16088/j.issn.1001-6600.2019100301
温小梅, 邓国和*
WEN Xiaomei, DENG Guohe*
摘要: 基于股价满足双随机波动率跳扩散模型的市场模型,考察复合幂期权定价问题。利用多维随机向量的特征函数、偏微分-积分方程、Fourier反变换等方法,得到欧式复合幂期权价格的解析表达式;应用数值计算实例分析不同市场模型下复合幂期权的价格比较,考查该市场模型中主要参数对期权价格的影响。计算结果表明:股价的波动率和跳跃强度因素对期权价格产生较大效果;复合幂期权有较好的风险管理灵活性, 也能给投资者带来更大收益。
中图分类号:
[1] GESKE R.The valuation of compound options[J].Journal of Financial Economics,1979,7(1):63-81.DOI: 10.1016/0304-405X(79)90022-9. [2]SELBY M J P,HODGES S D.On the evaluation of compound options[J].Management Science,1987,33(3):347-355. [3]BURASCHI A,DUMAS B.The forward valuations of compound option[J].Journal of Derivatives,2001,9(1):8-17.DOI: 10.3905/jod.2001.319165. [4]李荣华,戴永红,常秦.参数依赖于时间的复合期权[J].工程数学学报,2005,25(4):692-696. [5]GUKHAL C R.The compound option approach to American options on jump-diffusions[J].Journal of Economic Dynamics and Control,2004,28(10):2055-2074.DOI: 10.1016/j.jedc.2003.06.002. [6]LIU Y H,JIANG I M,HSUA W T.Compound option pricing under a double exponential jump diffusion model[J].North American Journal of Economics and Finance,2018,43:30-53.DOI: 10.1016/j.najef.2017.10.002. [7]GRIEBSCH S A.The evaluation of European compound option prices under stochastic volatility using Fourier transform techniques[J].Review of Derivatives Research,2013,16(2):135-165.DOI: 10.1007/s11147-012-9083-z. [8]CHIARELLA C,GRIEBSCH S,KANG B.A comparative study on time-efficient methods to price compound options in the Heston model[J].Computers and Mathematics with Applications,2014,67(6):1254-1270.DOI:10.1016/j.camwa.2014.01.008. [9]FOUQUE J P,HAN C H.Evaluation of compound options using perturbation approximation[J].Journal of Computational Finance,2005,9(1):41-61.DOI: 10.21314/JCF.2005.125. [10]SCOTT L O.Pricing stock options in a jump-diffusion model with stochastic volatility and interest rates:applications of Fourier inversion methods[J].Mathematical Finance,1997,7(4):413-426.DOI: 10.1111/1467-9965.00039. [11]DUFFIE D,PAN J,SINGLETON K J.Transform analysis and asset pricing for affine jump-diffusions[J].Econometrica,2000,68(6):1343-1376. [12]黄国安,邓国和.随机波动率下跳扩散模型的远期生效期权[J].广西师范大学学报(自然科学版),2009,27(3):35-39. [13]邓国和.随机波动率跳跃扩散模型下复合期权定价[J].数理统计与管理,2015,34(5):910-922. [14]苏甜.双因素随机波动率跳扩散模型下复合期权定价[D].桂林:广西师范大学,2017. [15]HEYNEN R C,KAT H M.Pricing and hedging power options[J].Financial Engineering and the Japanese Markets,1996,3(3):253-261.DOI: 10.1007/BF02425804. [16]TOMPKINS R G.Power options:hedging nonlinear risks[J].Journal of Risk,2000,2(2):29-45.DOI: 10.21314/JOR.2000.022. [17]MACOVSCHI S,QUITTARD-PINON F.On the pricing of power and other polynomial options[J].The Journal of Derivatives,2006,13(4):61-71.DOI: 10.3905/jod.2006.635421. [18]ESSER A.General valuation principles for arbitrary payoffs and applications to power options under stochastic volatility[J].Financial Markets and Portfolio Management,2003,17(3):351-372.DOI: 10.1007/s11408-003-0305-0. [19]KIM J,KIM B,MOON K S,et al.Valuation of power options under Heston’s stochastic volatility model[J].Journal of Economic Dynamics and Control,2012,36(11):1796-1813.DOI: 10.1016/j.jedc.2012.05.005. [20]杨向群,吴奕东.带跳的幂型支付欧式期权定价[J].广西师范大学学报(自然科学版),2007,25(3):56-59. [21]符双,薛红.分数跳-扩散O-U过程下幂型期权定价[J].哈尔滨商业大学学报(自然科学版),2014,30(6):758-762. [22]XUE G M,DENG G H.Pricing forward-starting power asian options with floating strike price[J].Mathematica Applicata,2017,30(4):916-926. [23]CHERNOV M,RONALD GALLLANT A,GHYSELS E,et al.Alternative models for stock price dynamics[J].Journal of Econometrics,2003,116(1/2):225-257.DOI:10.1016/S0304-4076(03)00108-8. [24]CARRP,WU L.Stochastic skew in currency options[J].Journal of Financial Economics,2007,86(1):213-247. [25]FONSECA J D,GRASSELLI M,TEBALDI C.A multi-factor volatility Heston model[J].Quantitative Finance,2008,8(6):591-604.DOI: 10.1080/14697680701668418. [26]ERAKER B,JOHANNES M,POLSON N.The impact of jumps in volatility and returns[J].The Journal of Finance,2003,58(3):1269-1300.DOI: 10.1111/1540-6261.00566. [27]AHLIP R,PARK L A F,PRODAN A.Semi-analytical option pricing under double Heston jump-diffusion hybrid model[J].Journal of Mathematical Sciences and Modelling,2018,1(3):138-152.DOI: 10.33187/jmsm.432019. [28]MEHRDOUST F,SABER N.Pricing arithmetic Asian option under a two-factor stochastic volatility model with jumps[J].Journal of Statistical Computation and Simulation,2015,85(18):3811-3819.DOI: 10.1080/00949655.2015.1046072. [29]邓国和.双跳跃仿射扩散模型的美式看跌期权定价[J].系统科学与数学,2017,37(7):1646-1663. |
No related articles found! |
|
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |