广西师范大学学报(哲学社会科学版) ›› 2021, Vol. 39 ›› Issue (2): 1-12.doi: 10.16088/j.issn.1001-6600.2020082603

• CCIR2020 •    下一篇

神经信息检索模型建模因素综述

杨州1,2, 范意兴3, 朱小飞1*, 郭嘉丰3, 王越2   

  1. 1.重庆理工大学 计算机科学与工程学院, 重庆 400054;
    2.搜狐公司智能媒体研发中心, 北京 100190;
    3.中国科学院计算技术研究所 网络数据科学与技术重点实验室, 北京 100190
  • 收稿日期:2020-08-26 修回日期:2020-09-22 出版日期:2021-03-25 发布日期:2021-04-15
  • 通讯作者: 朱小飞(1979—),男,江苏扬州人,重庆理工大学教授,博士。E-mail:zxf@cqut.edu.cn
  • 基金资助:
    国家自然科学基金(61722211,61502065);重庆市基础科学与前沿技术研究项目(cstc2017jcyjBX0059,cstc2017jcyjAX0339);重庆市教委语言文字科研项目重点项目(yyk20103)

Survey on Modeling Factors of Neural Information Retrieval Model

YANG Zhou1,2, FAN Yixing3, ZHU Xiaofei1*, GUO Jiafeng3, WANG Yue2   

  1. 1. School of Computer Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;
    2. Intelligent Media R & D Center SOHU, Beijing 100190, China;
    3. CAS Key Lab of Network Data Science and Technology, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2020-08-26 Revised:2020-09-22 Online:2021-03-25 Published:2021-04-15

摘要: 信息检索模型被广泛运用于搜索引擎中,且在工业领域被广泛应用。信息检索任务中,模型对信号量的侧重建模导致模型指标差异巨大。目前模型大部分基于以下部分或全部信息建模:精确信号量、相似信号量、信号量区分度、查询词权重、临近量、文本结构信息、不同分布假设。本文介绍各个建模因素的具体含义,并通过引用相关实验例证该因素对于建模起到的积极作用。基于以上实验及分析,最后对信息检索模型的未来发展及趋势作进一步讨论和分析。

关键词: 信息检索, 深度学习, 卷积神经网络, 循环神经网络, 综述

Abstract: Information retrieval models are widely used in search engines. In the task of information retrieval, these models focuses on the different semaphores, which leads to great differences in model performance. At present, most models are based on part or all of the following information: exact signals, similar signals, signals differentiation, query word weight, proximity, text structure, and different distribution assumptions. This paper introduces the specific meaning of each modeling factor, and exemplifies the positive effect of this factor on modeling through relevant experiments. Based on the above experiments and analysis, this paper finally discusses and analyzes the future development and the trend of information retrieval model.

Key words: information retrieval, deep learning, convolutional neural network, recurrent neural network, survey

中图分类号: 

  • TP391.3
[1] YANG Y,YIH S W,MEEK C.WikiQA:a challenge dataset for open-domain question answering[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudburg,PA:ACL,2015:2013-2018.
[2]RAJPURKAR P,ZHANG J,LOPYREV K,et al.SQuAD:100,000+ questions for machine comprehension of text[C]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL, 2016:2383-2392.
[3]YANG L,QIU M,GOTTIPATI S,et al.CQARank:jointly model topics and expertise in community question answering[C]//Proceedings of the 22nd ACM international conference on Conference on information &knowledge management.New York:ACM,2013:99-108.
[4]LECUN Y,BENGIO Y,HINTON G.Deep learning[J]. Nature,2015,521(7553):436-444.
[5]COLLOBERT R,WESTON J,BOTTOU L,et al.Natural language processing (almost) from scratch[J]. Journal of Machine Learning Research, 2011,12(1):2493-2537.
[6]VINYALS O,KAISER L,KOO T,et al.Grammar as a foreign language[EB/OL].(2015-06-09)[2020-08-26].https://arxiv.org/abs/1412.7449.
[7]LI H,XU J.Semantic matching in search[J]. Foundations and Trends in Information Retrieval,2014,7(5):343-469.
[8]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient estimation of word representations in vector space[EB/OL].(2013-09-07)[2020-08-26].https://arxiv.org/abs/1301.3781.
[9]PANG L,LAN Y Y, GUO J F,et al.A deep investigation of deep IR models[EB/OL].(2017-07-24)[2020-08-26].https://arxiv.org/abs/1707.07700.
[10]FANG H,TAO T,ZHAI C X.Diagnostic evaluation of information retrieval models[J]. ACM Transactions on Information Systems,2011:7.
[11]庞亮,兰艳艳,徐君,等.深度文本匹配综述[J].计算机学报,2017,40(4): 985-1003.
[12]CHUKLIN A,MARKOV I,RIJKE M D.Click models for Web search[J]. Synthesis Lectures on Information Concepts Retrieval &Services,2015,7(3):1-115.
[13]LIU Y Q,XIE X H,WANG C,et al.Time-aware click model[J]. ACM Transactions on Information Systems,2016,35(3):16.
[14]ROBERTSON S E,WALKER S.Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval[C]//Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.Berlin:Springer-Verlang,1994:232-241.
[15]ZHAI C,LAFFERTY J.A study of smoothing methods for language models applied to Ad Hoc information retrieval[C]//Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2001:333-342.
[16]HU B T, LU Z D, LI H,et al.Convolutional neural network architectures for matching natural language sentences[EB/OL].(2015-03-11)[2020-08-26].https://arxiv.org/abs/1503.03244v1.
[17]HUANG P S,HE X D,GAO J F,et al. Learning deep structured semantic models for web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Information &Knowledge Management. New York: ACM,2013:2333-2338.
[18]SHEN Y L,HE X D, GAO J F,et al. Learning semantic representations using convolutional neural networks for web search[C]//Proceedings of the 23rd International Conference on World Wide Web.New York:ACM,2014:373-374.
[19]GUO J F,FAN Y X,AI Q Y,et al.A deep relevance matching model for ad-hoc retrieval[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.New York:ACM,2016:55-64.
[20]FAN Y X,GUO J F, LAN Y Y,et al. Modeling diverse relevance patterns in Ad-hoc retrieval[C]//The 41st International ACM SIGIR Conference on Research &Development in Information Retrieval.New York:ACM,2018:375-384.
[21]MITRA B,DIAZ F,CRASWELL N.Learning to match using local and distributed representations of text for web search [EB/OL].(2016-10-26)[2020-08-26].https://arxiv.org/abs/1610.08136.
[22]GRAVES A.Offline handwriting recognition with multidimensional recurrent neural networks[M]//MÄRGNER V,EL ABED H.Guide to OCR for Arabic Scripts.London:Springer,2012:297-313.
[23]CHO K,VAN MERRIENBOER B, GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL,2014:1724-1734.
[24]WAN S X,LAN Y Y,XU J,et al.Match-SRNN:modeling the recursive matching structure with spatial RNN[J].Computers &Graphics,2016,28(5):731-745.
[25]TAO T,ZHAI C X.An exploration of proximity measures in information retrieval[C]//Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2007:295-302.
[26]PANG L,LAN Y Y,GUO J F,et al.Deeprank:a new deep architecture for relevance ranking in information retrieval[C]//Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.New York: ACM,2017:257-266.
[27]PANG L,LAN Y Y,GUO J F,et al.Text matching as image recognition[C]//Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.Palo Alto,CA:AAAI Press,2016:2793-2799.
[28]LECUN Y,BOTTOU L.Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11):2278-2324.
[29]LEVIN E.A recurrent neural network:limitations and training[J]. Neural Networks,1990,3(6):641-650.
[30]DATAR M,Immorlica N,Indyk P,et al.Locality sensitive hashing scheme based on p-stable distributions[C]//Proceedings of the Twentieth Annual Symposium on Computational Geometry.New York: ACM,2004:253-262.
[31]DAI Z Y,XIONG C Y,CALLAN J,et al.Convolutional neural networks for soft-matching N-grams in Ad-hoc search[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.New York:ACM,2018:126-134.
[32]XIONG C Y,DAI Z Y,CALLAN J,et al.End-to-end neural ad-hoc ranking with kernel pooling[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:ACM,2017:55-64.
[33]HUI K,YATES A,BERBERICH K,et al.PACRR:a position-aware neural IR model for relevance atching[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing.Stroudburg,PA:ACL,2017:1049-1058.
[34]PONTES J,JOÃO D,CARVALHO R A D,et al.Information retrieval to knowledge retrieval:reflections and proposals[J].Perspectives em Ciência da Informaco,2013,18(4):2-17.
[35]GABRILOVICH E,MARKOVITCH S.Wikipedia-based semantic interpretation for natural language processing[J].Journal of Artificial Intelligence Research,2009,34:443-498.
[36]WU H C,LUK R W P,WONG K F,et al.A retrospective study of a hybrid document-context based retrieval model[J].Information Processing &Management,2007 43(5): 1308-1331.
[1] 邓文轩, 杨航, 靳婷. 基于注意力机制的图像分类降维方法[J]. 广西师范大学学报(哲学社会科学版), 2021, 39(2): 32-40.
[2] 薛涛, 丘森辉, 陆豪, 秦兴盛. 基于经验模态分解和多分支LSTM网络汇率预测[J]. 广西师范大学学报(哲学社会科学版), 2021, 39(2): 41-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发