广西师范大学学报(哲学社会科学版) ›› 2021, Vol. 39 ›› Issue (2): 119-124.doi: 10.16088/j.issn.1001-6600.2019082802

• CCIR2020 • 上一篇    下一篇

φ-平坦余挠理论

张晓磊1*, 赵伟2, 王芳贵1   

  1. 1.四川师范大学 数学科学学院, 四川 成都 610068;
    2.阿坝师范学院 数学与计算机科学学院, 四川 阿坝 623002
  • 收稿日期:2019-08-28 修回日期:2019-11-09 出版日期:2021-03-25 发布日期:2021-04-15
  • 通讯作者: 张晓磊(1986—),男,山东青岛人,四川师范大学博士研究生。E-mail:zxlrghj@163.com
  • 基金资助:
    国家自然科学基金(11671283)

On φ-flat Cotorsion Theory

ZHANG Xiaolei1*, ZHAO Wei2, WANG Fanggui1   

  1. 1. School of Mathematical Sciences, Sichuan Normal University, Chengdu Sichuan 610068, China;
    2. School of Mathematics and Computer Science, Aba Teachers University, Aba Sichuan 623002, China
  • Received:2019-08-28 Revised:2019-11-09 Online:2021-03-25 Published:2021-04-15

摘要: 引进并研究φ-平坦余挠理论, 证明了该余挠理论是完全余挠理论。设R是φ-环, 则φ-平坦余挠理论与经典平坦余挠理论相等当且仅当R是整环。作为应用, 给出了非诣零凝聚环和φ-VN正则环的新刻画和φ-平坦模的包类性质;证明了每个R-模都有一个满的φ-平坦包当且仅当R是非诣零凝聚环,并且φ-平坦模关于子模封闭。

关键词: 余挠理论, 盖类, 包类, φ-平坦模, φ-余挠模

Abstract: In this paper, the φ-flat cotorsion theory which is showed to be a perfect cotorsion theory is introduced and studied. Assume R is a φ-ring. It is proved that the φ-flat cotorsion theory coincides with the classical flat cotorsion theory if and only if R is a domain. As an application, new characterizations of Nonnil-coherent rings and φ-von Neumann rings are given. Finally, the envelope property of φ-flat modules is investigated and showing that every R-module has a surjective (pre)envelope if and only if R is a Nonnil-coherent ring and all φ-flat R-modules are closed under submodules.

Key words: cotorsion theory, covering class, enveloping class, φ-flat module, φ-cotorsion module

中图分类号: 

  • O154.2
[1] BADAWI A.On divided commutative rings[J].Communications in Algebra,1999,27(3):1465-1474.DOI: 10.1080/00927879908826507.
[2]BADAWI A.On φ-pseudo-valuation rings II[J].Houston Journal of Mathematics,2000,26(3):473-480.
[3]BADAWI A.On φ-chained rings and φ-pseudo-valuation rings[J].Houston Journal of Mathematics,2001,27(4):725-736.
[4]BADAWI A.On divided rings and φ-pseudo-valuation rings[J].International Journal of Commutative Rings,2002,1(2):51-60.
[5]BADAWI A,LUCAS T.On φ-Mori rings[J].Houston Journal of Mathematics,2006,32(1):1-31.
[6]ANDERSON D F,BADAWI A.On φ-Prüfer rings and φ-Bézout rings[J].Houston Journal of Mathematics,2004,30(2):331-343.
[7]ANDERSON D F,BADAWI A.On φ-Dedekind rings and φ-Krull rings[J].Houston Journal of Mathematics,2005,31(4):1007-1022.
[8]BADAWI A.On nonnil-Noetherian rings[J].Communications in Algebra,2003,31(4):1669-1677.DOI: 10.1081/AGB-120018502.
[9]ZHAO W,WANG F G,TANG G H.On φ-von Neumann regular rings[J].Journal of Korean Mathematical Society,2013,50(1):219-229.DOI: 10.4134/JKMS.2013.50.1.219.
[10]BACEM K, ALI B. Nonnil-coherent rings[J]. Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry,2016,57(2):297-305.DOI: 10.1007/s13366-015-0260-8.
[11]BICAN L,BASHIR R E,ENOCHS E.All modules have flat covers[J].Bulletin of the London Mathematical Society,2001,33(4):385-390.DOI: 10.1017/S0024609301008104.
[12]STENSTRÖM B. Rings of quotients: an introduction to methods of ring theory[M]. Heidelberg: Springer-Verlag,1975:136-159.
[13] 张晓磊. w-算子的盖包[J].四川师范大学学报(自然科学版),2019,42(3):382-386.DOI: 10.3969/j.issn.1001-8395.2019.03.016.
[14]HOLM H,JØRGENSEN P.Covers,precovers,and purity[J].Illinois Journal of Mathematics,2008,52(2):691-703.DOI: 10.1215/ijm/1248355359.
[15]梁春梅,王芳贵,吴小英.分次单内射模及其刻画[J].广西师范大学学报(自然科学版),2019,37(2):113-120.DOI:10.16088/j.issn.1001-6600.2019.02.013.
[16]刘天莉莲,王芳贵,高增辉.FI-gr-内射模[J].广西师范大学学报(自然科学版),2019,37(1):155-164.DOI:10.16088/j.issn.1001-6600.2019.01.018.
[17]赵伟, 张晓磊. 非诣零内射模[J]. 四川师范大学学报(自然科学版), 2019,42(6):808-815.DOI: 10.3969/j.issn.1001-8395.2019.06.016.
[18]赵伟.NP-环上的同调理论及其应用[D].成都:四川师范大学,2013.
[19]ENOCHS E E,JENDA O M G.Relative homological algebra[M]//De Gruyter Expositions in Mathematics:Volume 30.Berlin:Walter De Gruyter,2000:105-166.
[20]DING N Q,MAO L X.The cotorsion dimension of modules and rings[M].Boca Raton,FL:Chapman &Hall/CRC,2006:57-73.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发