广西师范大学学报(哲学社会科学版) ›› 2024, Vol. 60 ›› Issue (1): 92-103.doi: 10.16088/j.issn.1001-6597.2024.01.008

• 教育科学 • 上一篇    下一篇

智慧教育环境中促进教与学的可视化学习分析

吴忭, 陈思思   

  1. 华东师范大学 教育信息技术学系,上海 200062
  • 收稿日期:2023-01-15 出版日期:2024-01-25 发布日期:2024-02-26
  • 作者简介:吴忭,男,华东师范大学副教授,教育学博士,研究方向:学习科学、学习分析。
  • 基金资助:
    国家社科基金重大项目“人工智能促进未来教育发展研究”(19ZDA364)

Visual Learning Analysis for Promoting Teaching and Learning in a Smart Education Environment

WU Bian, CHEN Si-si   

  1. Department of Education Information Technology, East China Normal University, Shanghai 200062, China
  • Received:2023-01-15 Online:2024-01-25 Published:2024-02-26

摘要: 大数据的时代背景促进了智慧教育的发展,也给教学的变革与发展带来了前所未有的挑战——海量的教育大数据使教师难以凭借个体经验理解和解决多样化的教育问题,具有主观性的教学策略极大影响了教学成效。从所构建的可视化学习分析理论框架中发现,可视化学习分析能够应用于多样化的典型教育场景和教育模式,包括线上的自主学习、线下的课程学习和线上线下混合学习,以教师为主导的传统教学课堂和以学生为中心的建构主义课堂等。评价可视化学习分析的应用效果应从不同指标维度进行评估,例如视觉吸引力、可用性、理解水平、使用频次、使用满意度、感知有用性、学习效果和行为改变。未来研究需要关注如何提高教师、学生应用可视化学习分析的相关能力素养,更科学地考证可视化学习分析工具的实际使用效果。

关键词: 智慧教育, 数据智慧, 可视化学习分析, 学习分析仪表盘

Abstract: Big data has promoted the development of smart education and brought unprecedented challenges to the transformation and development of teaching—Overloaded data on education brings about difficulties for teachers to comprehend and solve diverse educational problems based on their individual experience, and subjective teaching strategies greatly affect teaching effectiveness. From the constructed theoretical framework of visual learning analysis, it is found that visual learning analysis can be applied to diverse typical educational scenarios and models, including online self-directed learning, offline curriculum learning, blended learning, the traditional teacher-centered classrooms, and student-centered constructivist classrooms. The application effectiveness of visual learning analysis should be evaluated from different indicator dimensions, such as visual attractiveness, usability, understanding level, frequency of use, satisfaction with use, perceived usefulness, learning effectiveness, and behavioral change. Future research needs to focus on how to improve the relevant abilities and literacy of teachers and students in applying visual learning analysis, and more scientifically verify the actual effectiveness of visual learning analysis tools.

Key words: smart education, data intelligence, visual learning analysis, learning analytical instruments

中图分类号:  G434

[1] Prinsloo P , Archer E , Barnes G, et al. Big(ger) data as better data in open distance learning: some provocations and theses[J]. International Review of Research in Open & Distributed Learning, 2015(1): 284-306.
[2] 祝智庭,贺斌.智慧教育:教育信息化的新境界[J].电化教育研究,2012(12):5-13.
[3] Ackoff R L. From data to wisdom[J].Journal of Applied Systems Analysis,1989(1):3-9.
[4] Song Y, Zhu Y. Big data and data science: what should we teach?[J]. Expert Systems,2016 (4) :364-373.
[5] Hrabowski F A, Suess J ,Fritz J. Assessment and analytics in institutional transformation[J]. Educause Review, 2011,46: 5 .
[6] Gelderblom G. Data-based decision making for instructional improvement in primary education[J]. International Journal of Educational Research, 2016, 80: 1-14.
[7] Khosravi H. Intelligent learning analytics dashboards: automated drill-down recommendations to support teacher data exploration[J]. Journal of Learning Analytics, 2021(3):133-154.
[8] Dervin B. Sense-making theory and practice: an overview of user interests in knowledge seeking and use[J]. Journal of Knowledge Management, 1998(2):36-46.
[9] Alhadad S S J. Visualizing data to support judgement, inference, and decision making in learning analytics: Insights from cognitive psychology and visualization science[J]. Journal of Learning Analytics, 2018(2):60-85.
[10] Keim D A, Mansmann F,Schneidewind J,et al. Visual analytics: scope and challenges [J].Visual Data Mining, 2008( 4404):76-90.
[11] 郑娅峰,赵亚宁,白雪,等.教育大数据可视化研究综述[J].计算机科学与探索,2021(3):403-422.
[12] Emmons S R, Light R P, Borner K. MOOC visual analytics: empowering students, teachers, researchers, and platform developers of massively open online courses [J] . Journal of the Association for Information Science and Technology ,2017(10): 2350-2363.
[13] Vieira C, Parsons P,Byrd V. Visual learning analytics of educational data: a systematic literature review and research agenda[J]. Computers & Education, 2018, 122 : 119-135.
[14] 胡立如,陈高伟.可视化学习分析:审视可视化技术的作用和价值[J].开放教育研究,2020(2):63-74.
[15] 张振虹,刘文,韩智.学习仪表盘:大数据时代的新型学习支持工具[J].现代远程教育研究,2014(3):100-107.
[16] 姜强,赵蔚,李勇帆,等.基于大数据的学习分析仪表盘研究[J].中国电化教育,2017(1):112-120.
[17] Gray J, Chaudhuri S,Bosworth A,et al. Data cube: a relational aggregation operator generalizing GROUP-BY, CROSS-TAB, and SUB-TOTALS[M]//Proceedings of the 12th International Conference on Data Engineering. New Orleans, LA, USA ,1996: 152-159).
[18] Zhang J,Tao D ,Chen M H , et al. Co-organizing the clleive joumey of inquiy with idea thread mapper [J].Jourmal of the Learming Sciences,2018 (3):1-41.
[19] Chen Q,X Yue, X Plantaz,et al. Viseq: visual analytics of learning sequence in massive open online courses[J].IEEE Trans Vis Comput Graph,2020 (3): 1622-1636.
[20] Papamitsiou Z, Economides A A. The impact of on-demand metacognitive help on effortful behaviour: a longitudinal study using task-related visual analytics[J].Journal of Computer Assisted Learning ,2020(1): 109-126.
[21] 张艳霞,孙洪涛,李爽,等.数据表征学习过程及其应用——学习分析数据集国际研究综述[J].中国电化教育,2015(9):85-93.
[22] 唐丽,张一春.学习分析仪表盘:教育大数据的可视化工具[J].高等理科教育,2018(6):31-36.
[23] Faraday P. Visually critiquing web pages[C]// 6th Conference on Human Factors and the Web. University of Texas-Austin,2000.
[24] Dourado R A , Rodrigues N,Ferreira R F,et al . A teacher-facing learning analytics dashboard for process-oriented feedback in online learning[C]// LAK21: 11th International Learning Analytics and Knowledge Conference, 2021:482-489. https://doi.org/10.1145/3448139.3448187.
[25] Mejia C B, Florian R,Vatrapu S. A novel web-based approach for visualization and inspection of reading difficulties on university students[J]. IEEE Transactions on Learning Technologies,2017(1): 53-67.
[26] 杨现民, 李新,晋欣泉. 智慧课堂中的数据应用理路与策略设计[J].广西师范大学学报(哲学社会科学版),2020(5):78-87.
[27] Bodily R,Verbert K. Review of research on student-facing learning analytics dashboards and educational recommender systems[J]. IEEE Transactions on Learning Technologies,2017 (4): 405-418.
[28] Park Y,Jo I-H. Factors that affect the success of learning analytics dashboards[J]. Educational Technology Research and Development,2019 (6): 1547-1571.
[1] 岳伟, 苏灵敏. 学会学习:智能时代学习方式变革的本质透视[J]. 广西师范大学学报(哲学社会科学版), 2023, 59(4): 58-67.
[2] 吴晓林, 邢羿飞. 知识复制抑或创新激发?——人工智能(ChatGPT)对社科类研究生教育的挑战与机遇[J]. 广西师范大学学报(哲学社会科学版), 2023, 59(2): 66-74.
[3] 陈增照, 石雅文, 王梦珂. 人工智能助推教育变革的现实图景——教师对ChatGPT的应对策略分析[J]. 广西师范大学学报(哲学社会科学版), 2023, 59(2): 75-85.
[4] 陆丹梅. 利用社会性软件提升中小学教师信息技术应用能力的策略研究[J]. 广西师范大学学报(哲学社会科学版), 2015, 51(6): 137-143.
[5] 朱红灿, 段港平. 基于Kano模型的在线课堂学习体验关键要素研究[J]. 广西师范大学学报(哲学社会科学版), 2021, 57(3): 74-85.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 董慧, 杜晓依. 中国式现代化:活力与秩序的辩证统一[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 1 -10 .
[2] 陈家建, 洪君宝. 社会治理的话语与地方实践:基于“模糊政策”的概念解释[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 11 -20 .
[3] 臧雷振, 张冰倩, 刘超. 包容性增长:技术进步推动共同富裕的条件机制   ——来自全球宏观面板数据的证据[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 21 -31 .
[4] 徐国冲, 夏瑜, 刘岩松. “以弱协强”何以成功?——基于“程序—认知”框架的案例研究[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 32 -49 .
[5] 张书维, 汪彦, 秦枭童. 道阻且长,“行”者将“治”:公共事务的行为治理之道[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 50 -68 .
[6] 赵聚军, 庞尚尚. 社会安全治理现代化视域下基层矛盾化解机制的类型学考察与路径探赜[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 69 -82 .
[7] 刘蕾, 张新亚. 人工智能依赖对创造力的影响与未来教育发展路径的省思[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 83 -91 .
[8] 马卫红, 苏寻. 企业社会责任的“责任”究竟是什么[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 104 -116 .
[9] 韦政伟, 高亚林, 杨川. 营商环境对企业创新的影响——基于门槛模型的研究[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 117 -129 .
[10] 吴大顺. 乐府诗的文本传播与汉魏五言诗的体式建构[J]. 广西师范大学学报(哲学社会科学版), 2024, 60(1): 130 -141 .
版权所有 © 广西师范大学学报(哲学社会科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: xbgj@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发